AD-A216 909

— . ®

m Fort Huachuca, AZ 85613-5300

USAISEC

US Army Information Systems Engineering Command

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,
COMMUNICATIONS, AND COMPUTER SCIENCES

(AIRMICS)
POTENTIAL APLICATIONS OF
ARTIFICIAL INTELLIGENCE
TO THE FIELD OF
SOFTWARE ENGINEERING
ASQBG-I-89-003
October, 1988
QLECTE
s JAN18 1990
>B
AIRMICS

115 O’Keefe Building
Georgia Institute of Technology

Atlanta, GA 30332-0800

‘-“""‘;.".;‘;.‘;'."‘:.'.'...':"%' 90 01 17 029

LINCIASSIFIED

- ECLRIX CLASSIEICALIQN QE TMIS PAGE,
Form Approved
REPORT DOCUMENTATION PAGE OMB No_ 0704--188
Exp. Date: Jun 30, 1986
la. l{ji;?ck‘{‘ i\Eg%mlT;i CLASSIFICATION 1b. RESTRICTIVE MARKINGS
IFIED
NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
N/A
2b. DECLASSIFICATION / DOUWNGRADING SCHEDULE N/A
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A
6a. NAME OF PERFORMING ORGANIZATION O O e aaBOL 7a. NAME OF MONITORING ORGANIZATION
ntelligent Systems Group, Data Systems Resear PP N/A
Dakridge National Labs

6¢c. ADDRESS (City, Sta's ard ZIP Code)] 7b. ADDRESS (City, State, and Zip Code)
Oakridge, TN 13783i-6100

N/A
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION . (if applicable)
U.S. Army Institute for Research in Mgmi. Interagency Agreement DOE No. 1662-1662~A1
Information, Communications & Computer Sci. ASBG-1
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE QF FUNDING NIMBERS
115 O’Keefe Bldg., PROGRAM PROJECT TASK WORK UNIT

Georgia Institute of Technology ELEMENT NO. | NO. No. ACCESSION NO.

Atlanta, GA 30332-0800 DY10-02 0S 01

11. TITLE (Include Security Classification)

Potential Applications of Artificial Intelligence to the Field of Software Engineering (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)
Emrich, M.; Agarwal, A.; Jairam, B; Murthy, N.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT

FINAL 87/02 87/12 88-03-13 144
FROM TO

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if nccessary and identily by block number)

FIELD GROUP SUB_GROUP | Artificial Intelligence, Software Engineering, Knowledge-based Systems, Knowledge-
based programming tools.

4119 S.I'IL:‘ACI' (Continue on reverse if necessary and identity by block number)

—The software crisis initiated a major change in the perspective of software engineering. While conventional
methodologies may have met software development requirements a decade ago, the present scale of programming has
made automaticn of the development process imperative. Recent research has focused on the application of artificial
intelligence (Al) techniques to software engineering. The ultimate goal is the automation of the entire software devel-
opment life cycle.

An overview of the software development life cycle is presented. The feasibility of incorporating Al methods for
automating the traditional and prototyping approaches to software development is explored. A number of current re-
search projects which apply Al to software engineering tasks, including a knowledge-based software project manager
are discussed. Future research directions are highlighted. (\qx)ﬁ

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
) uncrassiFiED / UNLIMITED [} SAME As ReT. [] DTIC USERS UNCLASSIFIED
l2a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL.
Maior George E. Thurmond il (404) 8 94-3110 ASBG - |
DD FORM 1473, 54 MAR 83 APR cdition may be used until exhausted SECURITY CLASSIFICATION QI 1IlS PAGE
All other editions are obsolete UNCLASSIFIED

This work was done under Interagency Agreement DOE number 1662-1662-A1 for the United States
Army Institute for Research in Management Information, Communications, and Computer Sciences
(AIRMICS), the RDTE organization of the United States Army Information Systems Engineering Com-
mand (USAISEC). This report is not to be construed as an official Army position, unless so designated
by other authorized documents. The material included herein is approved for public release, distribution
unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED.

/‘ . l//—
‘-/(et Hoey”
A ROVZ

Glenn E. Racine, Chief John R. Mitchell
Computer and Information Systems Division Director, AIRMICS

Accessien Por
NTIS GRAAIL ?

DTIC TAB m]
Unanneunced O

Justification . _ |

By
Distribution/

Availability Codes

Avail and/or
Dist Special

,P(\

" -

POTENTIAL APPLICATIONS OF ARTIFICIAL INTELLIGENCE
. TO THE FIELD OF SOFTWARE ENGINEERING

M. Emrich, A. Agarwal, B. Jairam, N. Murthy

Intelligent Systems Group
Data Systems Research and Development Program
Oak Ridge Reservation
Oak Ridge, TN 37831-6100

Martin Marietta Energy Systems, Inc
for the

U.S. Dept. of Energy
Under Contract No. DE-AC05-840R21400

Prepared for

U.S. ARMY INSTITUTE FOR RESEARCH IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND CUMPYITER SCIENCES
(AIRMICS,

under Interagency Agreement DOE No. 1662-1662-A1

QOctober, 1988

TABLE OF CONTENTS

Page No.

ABSTRACT . + « &« =« o o o o o o o o o o o o o o o o « o vii

ACKNOWLEDGEMENTS . . .« + ¢ o & o o o o o o s o o « o« = ix

* . 1. INTRODUCTION . . « ¢ o « « o o o s o o o s o o s = 1
2. OVERVIEW OF THE TRADITIONAL SOFTWARE DEVELOPMENT

LIFE CYCLE . . v ¢ ¢ ¢ o @« o o o o o « o o o » » & 9

2.1 REQUIREMENTS PHASE + . &+ « « &+ « =« 9

2.2 SPECIFICATIONS PHASE . . ¢« « « « &+ « o « « = 9

2.3 DESIGN PHASE ¢ ¢ ¢ ¢ o o s ¢ o o o 11
2.4 CODING PHASE ¢« ¢ o o o o o o o o o =« 11

2.5 IMPLEMENTATION AND VERIFICATION PHASE 12

2.6 MAINTENANCE PHASE « « « « « o « o & & 12

2.7 DISADVANTAGES OF THE TRADITIONAL APPROACH . . 12

2.7.1 Error Correction 13
2.7.2 Missed Deadlines « .« « . 13
2.7.3 Elimination of Alternatives 13
2.7.4 RedundancCy . . . « « « o v o o o o =« 13
3. OVERVIEW OF PROTOTYPING APPROACH TO SOFTWARE
DEVELOPMENT e e s e e e o e e e 15
3.1 ADVANTAGES OF PROTOTYPING « + « =« 17
3.1.1 Reduced Specification
and De51gn Errors . . o e e e e e 17
3.1.2 Reduced Time Required to
Produce Systems . . e e e e e e e 17
3.1.3 Increased User Sat1sfact10n e e e 17
3.1.4 Increased Design Options 18

3.2 RESOURCES ASSOCIATED WITH PROTOTYPING 18

° 3.2.1 On-line Interactive Systems 18
3.2.2 Fourth Generation Languages 18
3.2.3 Generalized Software 19

iii

TABLE OF CONTENTS (cont.)

Page No,
3.3 COMPARISON OF RESOURCES NEEDED FOR THE

TWO METHODOLOGIES ¢« &« ¢ ¢ o & o @ 19 ",
3.3.1 Development Cost and Time 19

3.3.2 Resource Cost « +« ¢ ¢ o o 20 .
3.3.3 Opportunity Cost « ¢« « . & 20 *
3.3.4 Operating Cost « « « & 20

3.3.5 Maintenance Cost . . . « ¢« « ¢« o ¢ & 21

IRCUMSTANCES WHICH MAKE PROTOTYPING
NEFFICIENT . . . ¢ ¢ ¢ ¢ ¢ o o « o o o o 21

w
L]
'S

ale]

4.1 Well-Defined Goals . . . « «. ¢« « « & 21
4.2 Limited User Time « « . 21
.4.3 High Resource Acquisition

COSE ¢ ¢ ¢ o ¢« ¢ ¢ o o o o o o o o o 21

wWWww

4. AI AND SOFTWARE ENGINEERING « « o o o o & 23

5. AI/SOFTWARE ENGINEERING CROSSOVER « « . . 27

6. KNOWLEDGE-BASED SOFTWARE ASSISTANT (KBSA) 29

7. PROGRAMMER’S APPRENTICE (PA) . . ¢ « « o o o o o o 31

8. KNOWLEDGE BASED PROGRAMMING ASSISTANT (KBPA) . . . 33

9. GLITTER . . ¢ ¢ o ¢ ¢ o ¢ o o o o o o o o o s o 35

10. SOFTWARE MANAGER APPRENTICE« + « « ¢ o« o o 37
10.1 RELEVANT RESEARCH ¢ ¢ ¢ o o « & o 37

10.2 CURRENT EFFORT . . ¢ ¢ .« ¢ ¢ ¢« o « « o o o o 38

10.3 SOFTMAN SYSTEM . . . ¢ ¢« ¢ ¢ o o o o o o o = 41

10.3.1 Modules 1 and 2 . . .« . « « ¢ o o 43

10.3.2 Module 3 ¢« ¢« ¢ o o ¢ o o o @ 44 K
10.4 CURRENT STATUS . . . « ¢ ¢ ¢ o« o o o o o o & 44

10.5 ENHANCEMENTS . . . ¢ ¢« « &« o « &+ o o o o o o 46 .
11. DISCUSSION T 51
12. REFERENCES T 53

iv

I
}
|

TABLE OF CONTENTS (cont.)

Page No.
13. ANNOTATED BIBLIOGRAPHY 59
) 13.1 GENERAL . . + v + v v « v w v v v v v v v . 59
] 13.2 PROTOTYPING .+ « + & 4 4 o o o v e e e e e o 72
APPENDIX A: SOFTMAN SCREENS . . + « v « « « v « « . . 15
APPENDIX B: SAMPLE CONSULTATION 109
APPENDIX C: GLOSSARY OF RELEVANT TERMS 139

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Table 1.

Table 2.

LIST OF FIGURES

Traditional Approach to Software

Development

Prototypical Approach to Software

Development
Sample SOFTMAN Rules
Sample SOFTMAN Frame

SOFTMAN Structure o e e e

LIST OF TABLES

AI/Software Engineering Systems:

AIl/Software Engineering Systems:

vi

Status .

Functions

10

16

39

40

42

ABSTRACT

The software crisis initiated a major <change in the
perspective of software engineering. While conventional
methodologies may have met software development requirements a
decade ago, the present scale of programming has made automation
of the development process imperative. Recent research focusses
on the application of artificial intelligence (AI) techniques to
software engineering. The ultimate goal is the automation of the
entire software development life cycle.

An overview of the software development 1life cycle is
presented. The feasibility of incorporating AI methods for
automating the traditional and prototyping approaches to software
development is explored. A number of current research projects
which apply AI to software engineering tasks, including a
knowledge-based software project manager, are discussed. Future
research areas are highlighted.

vii

ACKNOWLEDGEMENTS

The authors acknowledge the information assistance provided
by Dr. Charles Rich of the Massachusetts Institute of Technology:
Dr. Mehdi Harandi of the University of Illinois, Urbana; Dr.
Stephen Fickas of the University of Oregon, Eugene; and Dr.
Cordell Green of the Kestrel Institute, Palo Alto, California.
Special thanks are also due to Drs. Rich and Harandi for their
participation in a briefing at Ft. Belvoir, Virginia. The
authors acknowledge assistance from the Central Research Library
Staff, especially Judith Booth, Opal Russell, and Kendra Albright
Jones for reference support. Additionally, appreciation goes to
Julie Williams, Andrew M. Rochat, and Teresa Ladd for
administrative and clerical support.

ix

ﬂ

1. INTRODUCTION

Software engineering has emerged as an important area in
computer science. It focusses on the development and
. implementation of large software systems (Zelkowitz, 1¢79). The

field seeks to systematize and formalize the various activities

involved in the science of programming and systems development.
In the early seventies, the need for such formalization arose
when conventional development methods failed to adequately meet
the challenges posed by system design. This period was
characterized by tremendous improvements in hardware technology.
As a result of these advances, computer systems with high power
and large capacity became feasiblef Such systems led to the need
for very large and extremely complex programming tasks. This
phenomenon is designated as the software crisis (Sommerville,
1985).

While software engineering has developed into a practical
methodology to overcome the software crisis, another important
area in computer science that has emerged 1is artificial
intelligence (AI). Although it is not the intent of this paper
to precisely and formally define AI, its general meaning can be
intuitively described as the science of making computers
"intelligent." Intelligent in the sense that they are capable of

- performing actions that they have not been explicitly programmed
to do (Barr, 1981; Barr, 1982). An illustrative case is the

ability to reason and infer based on incomplete knowledge and to

evaluate alternatives wusing heuristics. Machines that can
“learn" based upon their past experiences can also be included in
this category.

The investigation presented in this report emphasizes
integrating the two fields for achieving software development
automation. The ultimate goal of this integration is to develop
systems that generate reliable machine executable programs
starting with the requirements definition phase (Partridge,
1986). Although considerable progress remains to be made before
this goal 1is attained, current research has succeeded in
automating come aspects of the software development life cycle
(SDLC) .

Several current research projects attempt to automate the
various SDLC stages (Table 1). Some address more than one stage.
The Knowledge Based Software Assistant (KBSA) project at the Rome
Air Development Center (KBSA, 1987) is an attempt to develop a
comprehensive, intelligent software development environment. The
Programmer’s Apprentice (PA) project at the Massachusetts
Institute of Technology focusses on developing an intelligent
system that emulates a human assistant. The ultimate objective
is to continually gather problem-solving heuristics uutil the
system approximates the expert’s knowledge. The GLITTER project
at the University of Oregon, Eugene seeks to formalize and
automate the specifications process. The Knowledge Based

Programming Assistant (KBPA) project at the University of

‘sauresjurens JNgJ JUaId}Ip I0] 3p0d 3jelauald o)

pasueyua 3ulaq !$O113PWIIANU] WOYJ J[qe[reat se00c0e 00000 | ss0see | IOJRIBUAY) IPO)
AIrensawwod {10jeI1auald apod aqeladrejay SaUja W]
"sIeak 34315 yxau Suunp
passalppe 3q [[is sa[npour 3ui}say pue uJisap
‘wIMOIIND ?jenpeidiapun ay3 ul sasodind
Teuoljednpa 10 pasn Juleq are pue Apeas ase 00cees | sesvee s0ccee vdd)l/waiskg
jun 3uiddngep pue jrun Burpod jo sadLi0j01g pry udisa(y
ALV Pa[Te? wajss e Y3im eale sisfreue ojul
Suifpis1eatp Apjuatind ‘aseyd voneoynads
1oj padojaaap 3ulaq st ad£10701g 0000 | secsve s0veoe YALLIIO
paddosig j9afo1g sesees 1Sd
IMINSUT IS 1% YNIJTY 10}
siseq papiaoid paddoss joafo1g ssecee IHD
sIed4 om3} 1Xau uiyjim sade)s 1ayjo sesese XXX Y) XXX anuaiddy
ssaIppe -333[du10d anpous I0jelauald apo)) s Jowrureigos
*jusuIduUYyal pue apeiddn
JUBISUOD I3(qe[reAe A[TedlowuIo))
‘pajejdurod usaq sey wagsg se e sece e seco e IYYYY) JaM
2lqe[reay
spuaiy ainyng | A[feniowwo) adfy01014 a3e)s
pue snje3§ jualIn) Io / pue Aem 13pup) | Jows(| reswaicey], 103fo1g
as) A[req ul | yoreasey

sn3vlg :swasdg JunavuisSuy aremijog/Iv ‘1 ajqel

I l

‘sanyfiqeded yndyno oiydesd pue ainjes) uorya[durod 03 3800 ©
Jo uoyerodiodul ‘aoejsajul 1asn A[puaisj
alow ® Jo Juawdo[aA3p apnUt SIUIWDURYUI
ammyng ‘Apeal st ad£yo0j01d reuoiyesysuowa(g

s100l01d epy J0J wayshs uolyeuUII}Sd IS0 se0coe | evssee | escone SIOV
VIDS/ pue siopueg ‘[[pmAauol ‘[211s9Y 1e

uo FuoF s30e) 3y} UO YIOAN XYY 0o vsaX

Buruuns pue dun st ad£jo3014 seceee XXX asd

‘paddo3g 123fo1g TN XXX ov/S3
‘DYD Wol} A[reidiowrwiod J[qe|resr

DYD e asnoy-ul pasn Juag secsee %00000 | sese0s seesee | JUnL/WIIL
*SJUSUIUOIIATR
Od pue xiu() Iapun ajesado o3 Juikjipowr

‘18 [reJ sutj-uo 3utos) t0000e | eoeses | cocoee NVOS

*Jiom s1sayy "G N ‘paedors paforg eeeese | I-jjrmsmolly
souewioprad paaoidurt
10} suoljedyIpowr Jourus !asn asnoy-ut

Aprewud fjoo3 sisayjuss wreiSory IRY XY teccsee | essooe SIavd

S[qe[reay o]
spuaiy armyng | A[reniswuo)) adf30j014 98ess
pu® snje)1g jualIn) io / pue Lem sopupy | Jowraq | reonjeioeyq] waloid
as() Areq up yoIeasay

(penurjuod) ‘1 siqey,

15 e

Illinois, Urbana focusses on developing an intelligent design,
coding, testing, and debugging tool.

Table 2 1lists several other projects that attempt to
automate the various stages of the SDILC. While most of these
focus on activities such as requirements analysis,
specifications, design, and code generation, the effort has not
been toward applying AI techniques for improving rapid
prototyping. Rapid prototyping is an iterative process of
developing programs from incomplete specifications. Since AI
involves solutions to problems with incomplete knowledge, it can
be useful for this purpose.

Another important aspect of the integration is automated
software management support. Efforts 1like Time Line
(Breakthrough Software Corporation, Novato, California) and
Harvard Project Manager (Software Publishing Corporation,
Mountain View, California) were not knowledge-based. In
addition, little work has been done in software management using
metric-based measurements.

Metric-based software measurement is a branch of software
management which uses past performance to make predictions about
current projects. Early research in metrics was nearly abandoned
since the results obtained from metrics were sometimes
controversial and substantially different from actuals. Another
reason for the lack of interest was the difficulty in collecting
data for the metrics. However, in recent years, software quality

has become increasingly important. This has led to the revival

DAL Pue WODOWYV Auly oo o Wvds
puejAIe|y Jo Alupn oo d-ynusmony

VO 08s1q ueg
souueuf(] [eiousn) oo o0 SLYYd
101R13UY) 3po)
soljoWIA] oo SOLPWINY]
usredwey)) ‘suequq) vd g/ wasig
‘SIoul[f] jo Atuf 3 o o0 o0 ply udisaqg
auadny ‘uofaiQ) jo Atup) .o HALLITO
MU (91189 ' o0 o0 IHD
LIN L o0 oo oo o0 uarddy
s Joururesfol

SINTUOLISY UOISNOH
se[Snog PuuodIW - os o0 oo LU

O1as jo SuiS8nqaq | uonessuan sisd[euy pue

uoneziuedi) | uonwiBauy | Juswedeue)y | soueusjurely / Sunsay, apo) ufisa(] | suoipedyradg aloyy

suopuny : sweysg JullsewIsuy 2IvMPos/IV ‘Z IIqVL

‘AN ‘epsoylag ‘sishjeuy

WaysAG Jo 2INYIgsuy ') SADV
VO 9V o=d
ANNJIISU] [31189Y (1] (1] (2] (1] (L] ee (1) vSaM
121U3)) Yol1easayy
PmMoyuasty 'S oW oo oo asd
[N 'sq®1 [1°g] ve ov/sd
V) eleqieq ejueg
-d10)) yoreasay [elsuan) oo ' LunL/WINILL
01as jo 3u33nqag | uonjerdusn sis{[euy pue
uonjeziuedl(y | uoyeiSaqu] | juswsfeuely | soueusjurepy / 8unysay, apo) uBisag | suonresywadg walo1g
suonduny : suonyeorjddy Sutresuwduy aremijos/Iy 'z 9|qe], (panunuod) -z a|qe]

of metrics measures. Research has generated reliable metrics
which can be used as project management guidelines. In addition,
developments in hardware and software have made it easier to
automatically collect metrics data (e.g., run time and source
lines of code). A project is underway to develop a
knowledge-based system, SOFTMAN Apprentice, for performing
automated project management. The system derives its basic
concept from metrics research performed at the University of

Maryland (Basili, 1985).

2. OVERVIEW OF THE TRADITIONAL DEVELOPMENT LIFE CYCLE

An important concept in software engineering is that of the
SDLC. As the name implies, it describes the process of
developing a software system from conception through
implementation and maintenance (Birrell, 1985). This process
proceeds through several stages (Beregi, 1984), during which the
system 1is successively transformed from high-level, natural

language specifications to machine executable code (Figure 1).

2.1 REQUIREMENTS PHASE

The first stage in the SDILC is requirements analysis. In
this phase, system analysts work to understand the existing
software and hardware environment of the user. The user provides
the problem description and specification to the analysts. The
analysts identify potential solutions to any problems and rank
them in order of certain parameters (e.g., cost and performance).
Finally, they define the problem in terms of its functions and
constraints. An acceptable solution to the problem and a
statement of resources are determined. A document is written

communicating requirements to the development team.

2.2 SPECIFICATIONS PHASE

From user specifications, software developers produce the
architectural specifications. This framework identifies the
interfaces and interrelationships between various systenm

components, as well as the data flow between the components.

PHASES:

(1) REQUIREMENTS

<.

(2) SPECFICATON

<

(3) DESIGN

N\

) CODING

\

o g

N\

Figure 1. Traditional Approach to Software Development

10

Internal details of compénents are deferred to a later stage.
The specifications are expressed in formal or semi-formal
language. In addition, flowcharts or diagrams (e.g., HIPO
charts) which pictorially depict the relationships between
components may be developed. One statement at this level may

expand to approximately one hundred lines of code.

2.3 DESIGN PHASE

It is in this phase that internal details of components are
written using pseudo-code, flowcharts, decision tables, etc. One
statement may expand to fifteen lines of code in the final
product. Design defects are removed by manual inspections;
undetected errors usually will not surface until the testing

phase.

2.4 CODING PHASE

The algorithms for how the computer will solve the problem
are developed during the design phase. After the design of the
system is complete, coding begins. Herein, the abstract design
is transformed via a programming language (e.g., PL/I, COBOL, and
Pascal) into a compilable program.

Coding is followed by system testing which essentially
consists of activities such as verification and validation.
During verification, the correctness of the system is checked.
Validation is the process of checking whether the system performs
its intended duties and solves its intended problem. In other

words, validation seeks to prove the system’s correspondence

11

ﬂ —

(Blum, 1986). The subtle point to be noted is that while a

program might be correct (i.e., true to its specifications), it
might not be the solution that is sought if the original

specifications were wrong.

2.5 IMPLEMENTATION AND VERIFICATION PHASE

Programmers code individual modules in high-level languages
and test each module. These modules are then integrated, and
tested for performance, functionality, and reliability. Design
errors not detected until this stage may cost as much as 75-80%

more to correct (Martin, 1985).

2.6 MAINTENANCE PHASE

This phase coexists with the usage of the software product.
It begins when the product goes on-line and involves correction
of errors detected during product usage. Such modifications may
involve major changes in the software which could be expensive in
terms of time and money. The maintenance phase constitutes about
60-80% of the software life cycle (Sommerville, 1985; Spies,

1983).

2.7 DISADVANTAGES OF THE TRADITIONAL APPROACH

The traditional method suffers from various shortcomings
when used for large scale software development. Errors may be
costly to detect and correct. Due to the length of time between
specification and implementation phases, deadlines may be missed.
Exploration of alternative designs are not feasible. In
addition, most existing reusable code is not utilized.

12

‘*1-------IlllllllIIIlIlIlIlIlIIIIIlIIlIllllllllllllllllllllllli

2.7.1 Error Correctjon

It may not be possible for the user to precisely define the
product’s operational requirements during the requirements phase.
While operational parameters like performance and ease-of-use are
more readily detected after the product has been implemented,
specification inconsistencies are hard to detect. However, since
they are identified late in the SDLC, such errors may lead to
considerable changes in the original design itself.

2.7.2 Missed Deadlines

In large software projects, the intervening period between
the requirements and verification phases is so long that product
specifications often change by the time the product is
implemented. Users may be dissatisfied with the final product.
Changes are required to make the software acceptable to users.
This can be time-consuming and expensive, resulting in missed
deadlines.

2.7.3 Elimjnatjon of Alternatijves

Since it is rather expensive to build a working model in
this approach, neither users nor developers can explore the
effects of alternative designs on system performance. Hence, the
design may not be an optimal one. However, it is important to
have inexpensive, throw-away models for examining these aspects.
2.7.4 Redundancy

The traditional approach does not take advantage of existing
generalized software. Such software is usually available for the

maintenance of databases, security, and data integrity (Naumann,

13

1982). These utilities are often rewritten explicitly for the
user in the traditional approach. The same is true of various
generalized input-output software.

The traditional approach to software development entails
many modifications to the software. If user specifications are
poorly defined, this process becomes inefficient. An approach
which combines lengthy and sequential SDLC stages into a single,
short activity would be more effective. The prototyping approach

seeks to achieve this goal.

14

3. OVERVIEW OF THE PROTOTYPING APPROACH TO SOFTWARE DEVELOPMENT

Section 2 presented a short overview of the traditional
approach to software engineering. An alternative to the
"waterfall” methodology is rapid prototyping. A prototype is a
working model which is built cheaply and quickly to test the
validity of initial specifications and requirements. The user
checks the product after every refinement to verify expectations
and uncover inconsistencies (e.g., ease-of-use). The product is
modified iteratively until it becomes acceptable to the user
(Lipp, 1986).

Prototyping does require some initial resources (e.qg.,
fourth generation languages) to enable fast development. The
approach implicitly assumes that because human resources are most
expensive, they are the most important. Therefore, one must risk
other resources (e.g., hardware) prior to product development
(Gremillion, 1983).

The basic motivation behind this approach is the observation
that when a system is developed, the initial specifications are
rarely complete and correct. The result is that the shortcomings
of the system become apparent only after it has been developed;
therefore, the design either needs to be modified or
restructured. However, through prototyping an elementary design
is quickly developed and implemented. Therefore, if a design is
inadequate or faulty, it can be discarded and a new one
developed. This process is iterated until all requirements of
the system are met (Figure 2).

15

USER

FEEDBACK

Figure 2.

PROTOTYPE

A

TESTING

PROTOTYPE
AFTER
N ITERATIONS

PRODUCTION /
MAINTENANCE

Prototypical Approach to Software Development

16

3.1 ADVANTAGES OF PROTOTYPING
3.1.1 Reduced Specification and Design Errors

Since this approach involves continuous interaction between
the user and the developer, prototyping reduces specification
errors. Because the first version of the product is available
during early development (e.g., typically in days or weeks),
design errors can be addressed quickly. Consequently, the final
product has fewer inconsistencies when compared to the
traditional approach.
3.1.2 i i Q ste

Software 1is rarely rewritten; existing tools (e.q.
databases, query languages, and report generators) are used.
Often, the product is built using a fourth generation language
which relieves the user of data representation and procedural
details. Since errors are discovered quickly, less time is spent
correcting them. For example, John Deere reports that
inexperienced programmers could rewrite existing COBOL programs
using 1IBM’s ADF (Application Development Facility). A
productivity twice that of the COBOL team was achieved (Haltz,
1980) .
3.1.3 Increased User Satisfaction

The traditional approach usually does not involve the end
user until the implementation phase. This disassociates the user
from much of the software development process. However, rapid
prototyping involves the user early in the development process.

The user and developer participate in various sessions, thereby,

17

—_

enabling the development of a close rapport. Appleton (1973)
exemplifies prototyping in a functional applications system which
was initially developed using the traditional 1life-cycle
approach. The system was redeveloped using prototyping. It was

reported that the new product eliminated user dissatisfaction and

responded better to the users' dynamic environment. .
3.1.4 Increased Desian Options

For most systems, one particular solution cannot be
designated as the best. In the traditional development method,
the goal is to produce a feasible system the first time.
Conversely, that may not be possible in a single-pass approach.
However, in the prototyping method, when a trial-and-error
approach is used, designs can be iteratively produced and

discarded until an optimal solution is found.

3.2 RESOURCES ASSOCIATED WITH PROTOTYPING
3.2.1 On-line Interactijve Systems

The philosophy behind the prototyping approach is to develop
systems rapidly. Batch systems are not suitable for this
purpose. However, on-line interactive systems are able to
respond more rapidly to user needs.
3.2.2 Fourth Generation Landuages

Fourth generation languages, also known as VHLL's (Very
High-Level Languages), are program development tools which .
relieve the user of the data representation and procedural

details of conventional languages (e.g., COBOL and PL/1). Fourth

generation languages are primarily interpretive with features of

18

high-level coding incorporated. Such capabilities decrease
applications development time. For example, a benchmark version
of a management report system was developed at Heublein, Inc.
Using COBOL, the effort required six months. The same program
was created in half a day with Information Builders' fourth
generation package, FOCUS (McCracken, 1980).
3.2.3 Generalized Software

Generalized software provides database creation and update
capabilities without the deve'pment of complex programs.
Various packages are available for editing the database and
producing reports. 1In addition, security features are inherent
in such software. The burden of programming details, not

directly related to the project, is shifted from the programmer.

3.3 COMPARISON OF RESOURCES NEEDED FOR THE TWO METHODOLOGIES

3.3.1 Development Cost and Time

Evidence suggests that both the development cost and time in
the prototyping approach are significantly 1less than that
required in the traditional approach (Naumann, 1982). Scott
(1978) describes a system that was estimated to cost $350,000;
however, using the prototyping approach, its development costs
totalled $35,000. In addition, other researchers (Read, 1981;
Mason, 1982) report productivity gains with reduction in human

resources.

19

Mason (1982) describes a rapid prototyping tool called
ACT/1. This tool provides specifications using scenarios which
are essentially user-system dialogues. | These prototypes are
translated by ACT/1 for production use.

.3.3.2 Resource Cost

When high-level tools are involved, considerable resource
acquisition costs may be associated with the prototyping
approach. Since the cost is only for the initial installation,
it may not be a major cost component if distributed over many

projects. The traditional approach does not involve this cost

factor.
3.3.3 Opportunjty Cost

Opportunity cost must be taken into account when comparing
the two development approaches. The prototyping approach
produces a working system much faster. In the traditional

method, the system is not available for a long period (i.e., from
the start to completion). Therefore, there is an opportunity
cost associated with the delayed availability of the product.
3.3.4 erat Cc

Costs are involved during system operation. For example,
generalized software may produce inefficient code with increased
run-time. If coding in the traditional method were by expert
programmers, operating costs may be higher for systems developed
using the prototype model. However, because software teams
routinely do not utilize expert programmers, the operating cost

for the prototyping approach may not be significantly different.

20

3.3.5 Maintenance Cost

Maintenance costs are largely due to the various design and
specification errors discovered after the product is in
operation. With the prototyping approach, errors are more likely
to be discovered early in the development process. Because
changes are made early and at a higher level, this results in a

lower maintenance cost for prototyped systems.

3.4 CIRCUMSTANCES WHICH MAKE PROTOTYPING INEFFICIENT
3.4.1 Well-Defined Goals

Some projects may have well-defined, stringent requirements.
It may be possible to accurately define the specifications before
the product is developed. 1In such situations, it is appropriate
to develop the product using the traditional approach. This may
also result in more efficient code in a lower-level language.
3.4.2 Limited User Time

An underlying assumption in the prototyping method is
availability of user time. This may not always be possible or
convenient. In such situations, prototyping may not offer any
significant advantage over the traditional method.
3.4.3 High Resource Acquisjition Cost

Initial resource costs are usually high for prototyping
(e.g., fourth generation 1lanquages and generalized software).
These costs are not cumulative; they form a minor fraction of the
development cost if amortized over several projects. However,
resource costs may increase on a per-project basis if fewer
projects share the initial resource acquisition costs.

21

,

Due to its inherent development methodology, prototyping
yields several benefits which cannot be envisioned within the
traditional model framework. Disadvahtaqes of prototyping
related to inefficient code can be overcome by developing throw-

awvay prototypes. Such prototypes are used to incrementally

capture specifications. AI techniques can be used effectively to

build throw-away prototypes from incomplete specifications.

22

4. AI AND SOFTWARE ENGINEERING

One solution suggested for the software crisis 1is the
development of software using AI techniques. Advantages of such
an approach are greater formalism and increased abstraction in
the entities and operations involved. This can be seen as an
intermediate step in developing methods that would allow
increased automation of software development activities. One
goal is to achieve higher programmer productivity.

The process of software development is an activity that is
inherently susceptible to errors. Errors can occur at all phases
of the SDLC. Their effects are amplified because they cascade.
Errors in requirements analysis can lead to errors in
specifications which, in turn, can lead to a faulty design, etc.
Oon the other hand, even if the specifications are correct, it is
possible for faulty code to be developed during the coding phase.
Therefore, a program being erroneous either 1logically or
syntactically, or both, is not an unusual phenomenon. Several
means have been suggested and tried for proving software
correctness (e.g., mathematical proofs, validation through
metrics collection and analysis, and error seeding). However,
none guarantee a completely bug-free and reliable program.
Application of AI to software engineering tasks can provide a

means of testing and verifying the correctness of programs.

23

Specification languages (e.g., the VHLL in the REFINE
environment, GIST, and RML) can express software requirements in
executable form. They can be enhanced incrementally (e.g., at
each stage the new specifications are executable). In addition,
maintenance can be effected by changing system specifications
rather than applying patches to the source code (Goldberg, 1986).
With maintenance tasks requiring up to 80% of the software
development costs (Martin, 1983), this could result in a
substantial savings.

Rapid prototyping has been strongly advocated as an
alternative to the traditional software development method. 1In
one research effort by Tavendale (1985), a prototype is developed
from initial specifications and iteratively refined before the
formal design phase begins. The prototype is generated in Prolog
directly from the specifications. 1In this manner, an operational
model can be used to verify initial specifications before system
development proceeds. In other work, Fischer (1984) reports a
rapid prototyping approach which focussed on supporting both
specification and implementation stages of the SDIC.

Although the idea of rapid prototyping is not new, the
feasibility of its practical implementation is fairly iimited in
the conventional software development environment. Whereas
fourth generation languages lend themselves to prototyping, some
authors advocate the use of AI techniques (AI, 1984; Wess, 1984).
AI involves solutions to problems, knowledge about which is not

complete prior to implementation. This knowledge may be the

24

specification of the problem or the data sets needed to reach the
solution (Loomis, 1986). The inference engine of an AI system
incorporates the search and reasoning methods to address such
situations. It uses existing knowledge to develop partial
solutions which may be further used to expand the knowledge base,
thereby, reducing the abstraction level of the specifications.

Rapid prototyping involves incremental development of user
programs based on incomplete user specifications. Such programs
must be flexible enough to be changed. Therefore, AI methods can
be used to prototype systems whose specifications and data are
initially ill defined. The inference engine saves the programmer
the burden of creating the detailed architecture for building
such a program. Since it is independent of the prototype that it
generates, the same inference engine can be used to develop
different pirototypes. Al methods also permit knowledge base
tracing to locate incorrect specifications and to provide system
documentation. With the use of AI, rapid prototyping becomes
feasible as a practical system development methodology.

Utilizing AI techniques, human expertise can be captured in
a "corporate memory" knowledge base. Such expertise can be made
more readily available for use by company personnel.
Additionally, the risk of losing information and knowledge when a

person leaves the organization is reduced.

25

5. AI/SOFTWARE ENGINEERING CROSSOVER

The major areas into which AI applications can be divided
include: robotics, computer vision, voice/speech recognition,
machine learning, natural language processing, and expert (i.e.,
knowledge-based) systems (Mishkoff, 1985). The crossover between
software engineering and the first area, robotics, is quite an
unlikely prospect. However, computer vision research holds
promise of software engineering (e.g., software design using flow
charts and data flow diagrams) utilizing the concepts of machine
vision and pattern recognition. In addition, voice and speech
recognition can contribute extensively as an input medium for
specifications and design implementations. Currently, little
research is being conducted in these areas although such efforts
could become more feasible as the technology develops.

The last two areas mentioned are the most promising for
Al/software engineering interaction. Natural language processing
is an area of active research (Schank, 1984). Easy-to-use front
ends to expert systems that carry out software engineering tasks
are the focus. One area where this is being applied is in the
specifications phase. Natural language processors are used to
gather the specifications and transform them into formal or semi-
formal representations (Harandi, 1988). These can be further

processed by automated programming tools (e.g., code generators).

27

The area that provides the widest scope for interaction
between AI and software engineering is expert systems. As
previously stated, the long~term objective of introducing AI into
software engineering is to automate the SDLC. Currently, expert
systems have been developed that perform requirements and
specifications analysis, code generation, testing, documentation,
etc. The following sections present major research efforts in

these areas.

28

6. KNOWLEDGE-BASED SOFTWARE ASSISTANT (KBSA)

The KBSA project is a long-term effort being undertaken by
the Rome Air Development Center (RADC) to provide an automated
software development environment (Benner, 1987). The essential
difference between the current software engineering paradigm and
the one proposed by KBSA is that KBSA imposes more formalism on
every SDLC activity. It gathers the evolutionary history of the
system from conception to implementation. Therefore, it is able
to provide a complete scenario of the implementation strategy,
the decision making that went into a system, the rationale behind
the decisions, the interfaces between the various units of the
system, and the constraints imposed.

KBSA is characterized by the following features: a wide
spectrum VHLL; an incremental, executable, and formal
specification mechanism; a formal implementation scheme capable
of validating and evaluating design decisions; and a maintenance
facility at the specification 1level. In KBSA, implementation
starts with a high-level abstract specification and proceeds
through a series of correctness preserving transformations. KBSA
can be perceived as an integrated system composed of a framework
(Huseth, 1987) and the following five facets: Project Management
Assistant (Jullig, 1986) which performs project definition,
project monitoring, and user interface; Requirements Assistant
(Harris, 1987) which deals with the informal user requirements;
Specifications Assistant (Johnson, 1987) which formalizes
requirements, validates them against user intentions and makes

29

them executable, and also provides a natural language front-end
paraphraser; Performance Assistant (Goldberg, 1987) which does a
performance analysis on the design decisions and evaluates them
at all levels of the SDIC; and Development Assistant which
derives an implementation from a completed specification.

| Currently, work on four of the five facets has begun. KBSA
is being investigated at four main institutions. Kestrel
Institute (Palo Alto, California) is developing the Project
Management Assistant and the Performance Assistant. Sanders
Associates (Nashua, New Hampshire) is developing the Requirements
Assistant. Work on the Specifications Assistant is being
performed by the University of Southern california - Information
Sciences Institute. The Development Assistant contract will be
awarded during the fiscal year 1988. The framework is being
developed by Honeywell Systems and Research Center (Minneapolis,

Minnesota).

30

7. PROGRAMMER'S APPRENTICE (PA)

This MIT project follows the approach of duplicating a human
expert's software development and problem-solving skills (Rich,
1987). The near-term goal is to develop an intelligent system
which provides assistance during the different SDLC stages. PA
uses a formalism called Plan Calculus to represent programs and
programming knowledge. This scheme is a combination of the
representational properties of flowcharts, data flow diagrams,
and abstract data types. PA uses a library of several hundred
plans; plans contain information regarding implementation methods
and program forms.

The PA is composed of three parts: Requirements Apprentice
(Rich, 1986a) provides assistance during the requirements
analysis and specifications phase; Synthesis Apprentice (Rich,
1986b) aids in validation of the specifications, detection of
inconsistencies, and other design decisions; and the
Implementation Apprentice. There is a considerable overlap
between the Implementation Apprentice and the Synthesis
Apprentice. The main difference is the increased reasoning
capabilities of the Synthesis Apprentice. While the Synthesis
Apprentice provides support during several design phases, the
Implementation Apprentice provides support only during
implementation stages (e.g., code generation, editing, and
program modification and maintenance).

Currently in PA, the Implementation Apprentice has been
developed to a prototypical stage. A knowledge-based editor,

31

KBEmacs, facilitates program creation by allowing algorithmic
fragments to be retrieved from a library (Waters, 1985; Waters,
1986) . Prototypes of other components of the PA project (e.q.,
Synthesis Apprentice and Requirements Apprentice) are under -

development.

32

8. KNOWLEDGE BASED PROGRAMMING ASSISTANT (KBPA)

KBPA is under development at the University of Illinois
(Urbana, Champaign). It is a knowledge-based support tool for
software development (Harandi, 1986). It assists the programmer
in the process of software development using knowledge-based
techniques. KBPA is composed of four modules: design aid,
coding aid, debugging aid, and testing aid. Each unit uses
domain specific knowledge which is also a part of the global
knowledge base. Such a structure facilitates the use of the
modules as standalones or as integrated units.

The design aid module interacts with the user and obtains
the high-level specifications (i.e., major components, inputs,
and outputs) of the system. This is accomplished with the aid of
data flow diagrams. Such diagrams not only describe a program in
terms of the data that flows through it, but alsc the way that
data is processed.

The coding module consists of a program editor and a design
coder. This unit aids the programmer in identifying poor
programming practices and advises the user in designing data
structures. The design coder builds templates (i.e., abstract
program plans); the editor transforms them into code.

The debugging module incorporates various features of
intelligent debugging. One such model is the shallow model. It
locates the cause of errors by having an "intuitive" idea of the

specific program being debugged.

33

In the Spring of 1986, prototypes of coding and debugging
modules had been implemented on the SUN and IBM RT. Currently,
the debugging unit is in an advanced stage of development. It is
used in debugging PASCAL programs as part of the University of
Illinois’ undergraduate curriculum. The design and testing

modules will be the last in the series to be implemented.

34

9. GLITTER

GLITTER was developed at the University of Oregon (Eugene,
Oregon) . It is implemented in HEARSAY III (Balzer, 1980). The
system is used in-house at the University to automate the
requirements analysis process (Fickas, 1985a).

GLITTER 1is based on Balzer’s (1980) Transformational
Implementation (TI) model. The model starts with a formal
specification of the problen. It applies a sequence of
correctness preserving transformations until a specification
conforming to the implementation conditions is reached. The
original TI model suffered from a lack of automation and a formal
scheme for representing goals, strategies, and design decisions.

The GLITTER system is used to overcome such shortcomings.
It is an interactive transformation system that uses problem-
solving techniques to automatically generate many of the
transformation application steps. It provides a means for
formalizing goals, strategies, and design decisions by specifying
a language that allows their expression and manipulation. The
syntax for specifying a goal consists of the keyword "GOAL" and a
set of typed arguments.

Formalism in specifying and cataloging strategies is
achieved through the use of "methods." Each method consists of a
goal slot, a filter slot, and an action slot. The goal slot
specifies the goal that needs to be achieved. The filter slot
checks for the appropriateness of the method given the context.
The action slot performs the operations needed to achieve the

35

goal. In addition, a method of conflict resolution between two
strategies that can be applied simultaneously is provided. This
is accomplished by the use of a "selection rule" mechanism. It
is similar to the IF/THEN rule construct and provides the
conflict resolution heuristic; this is usually a weight value
that is used to evaluate the suitability of the strategy given
the context.

One final advantage of GLITTER is that it provides a
documentation of the problem-solving process. This is done by
tracing the optimization sequence which led to the current state
of the problem. In other words, a history of the problem-solving
steps is provided. This aids in tracing the logic flow for
future maintenance.

Current research focusses on the development of an automated
requirements analysis system. The goal is to produce a complete
and correct requirements definition from sketchy, informal, and
incomplete user requirements (Fickas, 1985Db). GLITTER is used

extensively in this effort.

36

10. SOFTWARE MANAGER APPRENTICE

As the size of a computer system increases, the complexity
of the software multiplies. The system becomes increasingly
difficult to monitor and manage. Therefore, it is useful to
investicate techniques for automating management decisions. 1In a
common situation, more than one programmer is writing code, with
one project manager controlling all activities. The manager must
ensure that the project is completed on time, within budget, and
is appropriate for the user's needs. Such decisions are usually
based on the manager's past experience with handling similar

development efforts.

10.1 RELEVANT RESEARCH

Little work has been done in the area of software
management support which includes metric-based software
measurement. One reason for this is the difficulty in collecting
the data for making judgements based on metrics. In addition,
there is debate regarding the accuracy of exclusively
metric-based judgements. Most research done in the field of
metrics has been in software complexity measurement (Belady,
1979; Curtis, 1979; Storm, 1979).

One research effort that does address metric-based software
management is ARROWSMITH-P, a demonstration prototype developed
for a Master's thesis at the University of Maryland (Basili,
1985). It was written using both rule-based and frame-based

approaches. This dual effort demonstrated that both techniques

37

could produce comparably close results. The research project
indicated that enough knowledge about software management could
be input to obtain valid results from the system. ARROWSMITH-P
required the user to make judgements about the software project
(i.e., whether the number of lines of code were high or average,
whether the CPU time was high or average, etc.). Therefore, the
user had to be a semi-expert, while ARROWSMITH-P acted only as an

assistant.

10.2 CURRENT EFFORT

The Software Manager Apprentice (SOFTMAN) is a software
management system developed by the Center for Intelligent Systems
(0Oak Ridge, Tennessee) for the Army Institute for Research in
Management Information, Communications, and Computer Science
(AIRMICS) in Atlanta, Georgia. SOFTMAN does not require the
user to have expert knowledge. Instead, the user provides
quantitative inputs for the measurement metrics; SOFTMAN makes
the qualitative judgements. 1In its present development stage,
the software demonstrates the feasibility (i.e., a proof of
concept) of using expert systems as a technique for aiding
software management. One advantage of using the expert system
approach to project management is that knowledge about metrics
can be readily stored in rule sets (Figure 3). Moreover, I/0
can be accomplished using frame-bases (Figure 4). When 1in a
tutor mode, expert systems can also provide "how" and "why"

explanations about decisions (Emrich, 1985).

38

¢ Jyoeajyoeq-ou pue

[qasa syaeuw
artdwo) 3Ny 9815-q

(
as11dwo)/aduadr1a3u]

saTnyY NYWLJOS a1dwes °¢g ainbtyg

[4

2

ST 10119 3iasse pue 2, ‘113am Teosed It
,2, 119 398
£ ,0, 119 3ser [r3un

1x3 338 op IV
119

yoealyoeq-ou pue ,wWod, ‘nuaum y{eodsed J1
,u0d, wod 323

I1TeJ pue jOeB11}OEBQ-OU pPUB SO PUE UEBI[D pue

138S1 8)j0oAUT pue ,WOJ, ST NUBUWW JIISSE
pue syo 10

jyoeilydoeq-ou pue / = ,Wo0d, I

,W0d , wod 3sey

¢ ,wod, wod 3Isey [riun
,wod, wod 338 op

pue s> pue 3tutr Teosed 3IY
33INI3X

6d]

odoos-sely 1309lqQ oTT4 MOpPUIM 03 09 ydaeag Nooig

nuap 103 O14

]

M9 °NVWLJOS\TVOSVAOI\DI\:D :°11d

39

awexd NVWLJA0OS @Tdwes °p sanbrtg

[qasa syaeuw
a1tdwoy 3TN @v1L-q

(

aa11dwo) /edouadTTTa3ul

:anTep suny a9jndwo)
ionTep swil (1dD
:anJep sioaag

tanTep A3rarzonpoiad
tanfep Yy3iduo °9po)
:anTep 9INPaYOS B}

:301§
:301S
:301§
:301S
:301§
:3071S

Sury] :3jueaed

w1y

taurex]

6d]

adoos-sey 1302(qQ

nusay a10J3 o114

]

91Td MOPUIM 03 09 ydieag d0Tg

WYd LINSAY\TYOSVAOINDIN:D

‘9Ttd

40

The SOFTMAN system differs in several essential ways from
ARROWSMITH-P. Since ARROWSMITH-P required the user to make
qualitative judgements, there was no mathematics of metrics
involved. In contrast, the SOFTMAN system will calculate metric
values and make judgements based on the ranges in which the
calculated metric value falls. In SOFTMAN, uniform metrics are
not assumed throughout the development stage. Coding is divided
into early, middle, and late stages. Different metric judgements
are used for each stage. In addition, differences due to
language, productivity levels, and design considerations are used
to test a project's "health."

A primary aim of the system is to monitor the progress of a
time-bound software project. It checks for unexpected behavior
based on historical data collected from the environment. If
anomalies are detected, SOFTMAN will issue warnings. The manager
can then go deeper into the system to locate the problem and to
receive suggestions regarding corrective actions. Another use of
the system is as a tutor for training new personnel. In this
role, SOFTMAN can assist future managers with project parameter

estimation.

10.3 SOFTMAN SYSTEM

SOFTMAN is written using an expert system development tool,
Intelligence/Compiler (IntelligenceWare, 1986) and Turbo Pascal
(Borland, 1986). The overall system structure is shown in Figure
5. The consultation option consists of three modules.
DETERMINER (i.e., Module 1) determines if there is a problem in

41

NVNIL40S
3ix3
pejopdn PIOMSESO 4 SO
SOUION a93ul 1 eyopdn
r. ayopdn

UD AS(J}ON

uo|}D}NSUOD
D 9ASLIIOY

J913109dg
yiog 8buoyo

AN3IN
NIVIN

@10Q
abuoyy/I19S
}ooloud
o @39)2Q
s)oolouiy
j0 Aiojyoeuaig
}00i0i4 40 pue® 30 3o9fouy
$49}0WDID 4 J9}U] ae|dwo)d
_[se3opdn we)qold sJ030WOIDd yoeloid
H MO os800Y)D d03u3 }nsuod
m A
$0)0W}83 }oeioud
J93u3 MaN

‘G 2unbiy

2IN3ONILS
NVINLAOS

®310(Q
a93u3

Ad3u3
NVANLJOS

42

the software project. IDENTIFIER (i.e., Module 2) identifies
what the problem is and where it is located. REMOVER (Module 3)
recommends appropriate actions to be taken. The system is menu
driven (Appendix A). It guides the wuser through
question-and-answer sessions which primarily require short,
numeric answers, or menu solutions.

10.3.1 Modules 1 and 2

Upon initial entry into the system, the user is prompted to
enter the current date. This information is used to make
judgements about timely project completion. The "Main Menu"
lists available utilities (e.g., deleting projects, retrieving
consultations, and retrieving project updates).

When a new project is assigned to a manager, the "New
Project" option is used to enter the project parameters (e.g., a
unique project name, manager's name, estimated code size, number
of coders, date of start of coding, and estimated time for
project completion). Each parameter is input as a response to a
question. Once the project has been initiated, the manager can
intermittently consult SOFTMAN about the project's progress at a
given coding stage. Based on user responses and project

parameters, SOFTMAN will respond with a list of anomalies.

43

Context sensitive help for each question is provided at the
bottom of the screen. Help messages are displayed in a
different color. Additional help is available and can be called
by pressing <Enter> in place of a numeric response.

10.3.2 Module 3

In the REMOVER module, the manager obtains a 1list of
possible causes for a problem that has been detected by Module 2.
To investigate these causes further, the manager will be asked
more specific gquestions about the parameters. Based on the
answers, SOFTMAN will suggest possible solutions. Some of these
will require the manager to update project estimates that were
initially entered. These updates will be stored and can be
retrieved for later viewing.

By asking the manager questions regarding the quality of
system design, the REMOVER module will provide 1links to the
design and testing phases. It is possible that SOFTMAN will
suggest that the manager backtrack and reevaluate the design
before proceeding further in the coding stage. Since the
solutions for the problems require qualitative judgements,

#Hodule 3 will be knowledge intensive (i.e., rule based).

10.4 CURRENT STATUS

The present system has five input development parameters
gathered in Modules 1 and 2:

1) Number of lines of code.

2) Number of programmer hours.

3) Number of computer runs.

4) Number of software changes.

5) Amount of CPU time used.

44

Based on these parameters, Module 2 makes judgements on six
outputs (i.e., project schedule, productivity, code length, cpu
time, changes, and CPU runs) and identifies them as having a
problem or not. From this list, the user can analyze one problenm
at a time. When a problem is selected, a color-bar comparison of
the "Optimal Value" for that output parameter and the M“Actual
Value" from the project is provided. 1In addition, a brief text
is displayed to explain the problem. Currently, further help in
problem solution is provided for some output parameters (e.q.,
"Project Time Schedule").

After a consultation, the user may elect to store the
results for later retrieval. Such data can be used for guiding
new estimates. If the user elects not to save the session, a
message is displayed warning that all recent inputs and outputs
will be lost.

The user is given an opportunity to revise initial project
parameters. Via the "Main Menu,” each update made to a project
is stored. Updates can be retrieved for future consultation.

Since the data for the metrics are environment~dependent,
the Main Menu has an option for updating the metrics data files.
Data for this utility is collected from all projects that have
been run through the SOFTMAN "Complete® utility. Upcon completion
of each project, the manager should run this utility and enter
the final values of all parameters. The "Metrics Update" utility
can then be run to ensure that the metrics are adjusted by the

data from the completed project. This utility is password

45

protected so that unauthorized persons cannot change the data
files. It is important to note that the changes made in this
utility are permanent.

The current prototype performs some error checking
functions. It differentiates between numbers and strings. It
does not permit illegal choices. It displays menus for options
and uses graphics for improved I/O operations. Additionally, if
the user does not understand a particular question, help is

provided.

10.5 ENHANCEMENTS

SOFTMAN is under development as a working prototype. Its
purpose is to show the feasibility of applying expert systems to
software project management. An expanded system could have
several capabilities.

One major enhancement is to make the metrics dynamic. The
data used to make judgements will be dynamically collected and
updated in the data files for z particular environment. Although
user inputs will influence the data files, all such operations
will be transparent to the user. currently, only the
language-dependent environment parameters are dynamic (i.e., they
are read from the disk when SOFTMAN is first initialized). The
user can change this data in the ENV.DAT file. In the future,
each time data for a new project is entered, the system will

automatically update the metrics in the data files.

46

A utility to retrieve previous projects relevant to a
particular search (e.g., manager name or date of project start)
is planned. This facility can aid managers when estimating new
projects. Since projects can be recalled and consulted, such
capability can also be used to train new personnel.

Enhanced help facilities can aid decision making and
improve manager judgements. At present, such capabilities are
limited. Since it is quite common for users to misunderstand
questions and feed erroneous data, an expanded narrative could
improve user inputs. In addition, minimal capabilities are
provided by Intelligence/Compiler to include "how" and "“why"
explanations. These capabilities must be built using the Turbo
Pascal interface.

Future plans include a separate utility for each
development parameter input (e.g., number of lines of code).
These utilities can be used to calculate parameter values. In
addition, external Pascal programs could be called from within
SOFTMAN to return a parameter's value.

A utility to monitor a manager's performance with regard to
estimate accuracy can be developed. When the manager uses the
“New Project" utility and enters estimates, the system will
consult past standards for similar projects. Therefore, a guide
for current judgements and individual manager performance will be
provided.

The present research projects (both SOFTMAN and

ARROWSMITH-P) assume that lines of code is an adequate and useful

47

parameter for gauging a project's "“health." However, a more
accurate measure may be the number of functional modules (e.g.,
menu routines and report generators). This will be investigated
further in SOFTMAN.

At present, SOFTMAN addresses only the coding stage of the

SDLC. There are no 1links to the design phase or to the

maintenance phase. However, the system could include design
considerations in the REMOVER module asking the manager to
evaluate the quality of the system design. It has been reported
(Boehm, 1975; Hamilton, 1976) that approximately 65-75% of all
errors occur due to faulty design. Since a faulty or weak design
often leads to coding problems, this capability could increase
the overall management efficiency.

One of the important differences between SOFTMAN and
ARROWSMITH-P is that SOFTMAN uses different metric standards in
each coding stage. To inform the manager of the current coding
stage and advise regarding the appropriate coding stage, the
individual stages need to be clearly defined. To determine such
differences, temporal environment-dependent data will be
gathered.

In summary, SOFTMAN has shown that software management is a
candidate area for automated support. By 1990, it is estimated
that the shortfall of software engineers and analysts will reach
one million in the aerospace/defense industry alone, (Vosburgh,
1987). Since it is anticipated that this lack of technical

personnel will not be fulfilled, it must be compensated by

48

providing intelligent support tools. Better and more efficient
management of the available resources will enhance the ability to

build reliable systems. Sufficient interest has been generated

in this area to encourage future research.

49

1l. DISCUSSION

The application of AI to software engineering can
qualitatively and quantitatively improve the software development
process. Such an application is most feasible through expert
systems. This is due to the nature of software design and
development. It is an activity that requires knowledge of not
only programming techniques, but also of the application domain.
Since expert systems can incorporate both kinds of knowledge
through knowledge bases, they offer a good prospect for
introducing AT in software engineering. An investigation of
current research projects corroborates this notion. 1In addition,
it has provided an insight into the path such research has taken
and an indication of future direction.

Extensive research has been conducted in automatic code
generation and specification languages. However, little effort
has been devoted to automating the requirements analysis phase.
Application of AI concepts such as natural language processing to
automate this phase can lead to increased speed and ease in
system development.

The prototyping approach can lead to a substantial increase
in productivity. However, conventional software development
procedures do not allow the adaption of this approach as a
feasible system development methodology. The application of AI
can make prototyping a viable alternative to the traditional
SDLC. Therefore, research efforts to increase automation in
prototyping should be encouraged.

51

e

Automated software management support is another area that

has not generated much interest in the past. SOFTMAN and

ARROWSMITH-P which are both knowledge-based have demonstrated the
feasibility of using AI techniques for this process. Although
the validity of metric-based measurements has been in debate,
SOFTMAN has illustrated that metrics can provide sufficient
information to judge project "health."

Current research has succeeded, to a limited extent, in
automating certain SDLC phases. Research efforts such as the
ones highlighted in this report focus on automating several of
these phases. In the near-term, more expert systems addressing
specific SDLC activities will emerge However, a fully
integrated, automated software development environment is a long-

term goal.

52

12. REFERENCES

"AI Environment Speeds Software Development," Systems _and

Software, 3(8), 111-118 (1984).

Appleton, D. S. "System 2000 Database Management Systems,"
Boston, Massachusetts, November 1-2, 1973.

Balzer, R., "Transformational Implementation: An Example," IEEE
Transactions on Software Engineering, SE-7(4), 1981.

Balzer, R., L. D. Erman, P. London, and C. Williams, HEARSAY--
III: A Domain-Independent Framework for Expert Systems, pp.
108-110, in Proceedings of ¢t irst Ann ation
Conference on Artjificial Intelligence, Augqust 18-21, 1980,

Stanford, caljifornia, William Kaufmann, Inc., Los Altos,
California, 1980.

Barr, A. and E. A. Feigenbaum, Handbook on Artificial
Intelligence: Vol. 1, Kaufman, Los Altos, California, 1981.

Barr, A. and E. A. Feigenbaum, andboo o ificia
Intelligence: Vol. 2, Kaufman, Los Altos, California, 1982.

Basili, V. and C. Ramsey, "Arrowsmith-P: A Prototype Expert
System for Software Engineering Management," pp. 252-264 in
Expert Systems in Government Symposium, October 24-25, 1985,
Mclean, Virginia, IEEE Computer Society Press, Washington,
D. C., 1985.

Belady, L. A., "An Anti-Complexity Experiment," pp. 128-129 in
Workshop on OQuantitative Software Models, October 9-11,
1979, Kiamesha Lake, New York, IEEE Computer Society Press,
Washington, D. C., 1979.

Benner, K. M. and D. A. White, “The Knowledge-Based Software
Assistant: Overview," in Proceedings of the 2nd Annual

Knowledge-Based Software Assistant Conference, Augqust 18-20,

1987, Utjca, New York, Rome Air Development Center, Griffiss
Air Force Base, New York, 1987.

Beregi, W. E., "Architecture Prototyping in the Software

Engineering Environment," IBM Systems Journal, 23(1), 4-17
(1984).

Birrell, N. D. and M. A. Ould, A Practical Handbook for Software

Development, Cambridge University Press, New York, New York,
1985.

53

Blum, B. I. and V. G. Sigillito, "aAn Expert System for De51gn1ng
Information Systems," Johns Te ica '
7(1), 23-30 (1986).

Boehm, B. R., R. McClean, and D. Urfrig, "Some Experience with
Automated Aids to .the Design of Large Scale Reliable

Software," pp. 105-113 in: Inte 1a -on
Reljable Software, April 21-23, 1975, Los Angeles,

California, IEEE, New York, New York, 197S5.

Borland, Turbo Pascal, Version 3.01, Borland International, Inc.,
Scotts Valley, California, 1986.

Curtis, B., "In Search of Software Complexity," pp. 95-106 in

Workshop on OQuantjtative Software Models, October 9-11,

1979, Kiamesha Lake, New York, IEEE Computer Society Press,
Washington, D. C., 1979.

Emrich, M. L., Expert Systems Tools and Technigques, ORNL/TM-
9555, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
1985.

Fickas, S. F., "Automating the Transformatlonal Development of
Software," EEE ansactions on tware En eer , SE-

11(11), 1268-1277 (1985a).

Fickas, S. F., A__Knowledge-Based Approach to Sgegif;cation
Acquisiti and_ cons ion, CIS-TR 85-13, University of
Oregon, Eugene, Oregon, 1985b.

Fischer, G. and M. Schneider, "Knowledge-Based Communication

Processes in Software Engineering," pp. 358-368 in Seventh

t ation Confere o oftware ineeri arch 26-

9 1984, Orlan ida, IEEE Computer Society Press,
Washington, D.C., 1984. °

Goldberg, A. T., "Knowledge-Based Programming: A Survey of
Program Design and Construction Technlques,“ IEEE
nsactions on _Software ineerin SE-12(7), 752-768

(1986) .

Goldberg, A. T. and D. R. Smith, "Performance Estimetion for a
Knowledqe -Based Software Assistant," in ?gocegd;ngs of the
nnual Knowledge- oftw Ss enc

Augugt 18-20, 1987, Utica, New York, Rome Air Development

Center, Griffiss Air Force Base, New York, 1987.
Gremillion, L. L. and P. Pyburn, "Breaking the Systems

Development Bottleneck," Harvard Business Review, §61(2),
130-137 (1983).

54

Haltz, D. H., "ADF Experiences at John Deere," D303~SHARE, 50
(1980) .

Hamilton, M. and §S. Zeldin, "Higher Order Software: A
Methodology for Defining Software," IEEE Transactions on
Software Engineering, SE-2(1), 9-32 (1976).

Harandi, M. T. and M. D. Lubars, "A Design Environment for
Software Systems,"in Proceedings of the Conference on Expert
Svstems Technology jin ADP Environment, November 1-3, 1987,
Washington, D. C., Oak Ridge National Laboratory, Oak Ridge,
Tennessee, 1988.

Harandi, M. T., "Applying Knowledge-Based Techniques to Software
Development," Perspective in Computing, 6(1), 14-21 (1986).

Harris, D. R., "An Overview of the Knowledge-Based Requirements

Assistant," in Proceedings of the 2nd Annual Knowledge-Based

Software Assistant Conference, Auqust 18-20, 1987, Utica,
New York, Rome Air Development Center, Griffiss Air Force

Base, New York, 1987.

Huseth, S. and T. King, "A Common Framework for Knowledge-Based

Programming,” in Proceedings of the 2nd Annual Knowledge-

Based Software Assistant Conference, August 18-20, 1987,
Utica, New York, Rome Air Development Center, Griffiss Air
Force Base, New York, 1987.

IntelligenceWare, Intelligence/Compiler Manual, IntelligenceWare,
Inc., Los Angeles, California, 1986.

Johnson, J. R., "A Prototypical Success Story," Datamation,
29(11), 251-~256 (1983).

Johnson, W. L., "oOverview of the Knowledge-Based Specification
Assistant," in Proceedings of the 2nd Annual Knowledge-Based
Software Assistant Conference, Auqust 18-20, 1987, Utica,
New York, Rome Air Development Center, Griffiss Air Force
Base, New York, 1987.

Jullig, R., KBSA-PMA Technical Report, Rome Air Development
Center, Griffiss Air Force Base, New York, 1986.

KBSA, 2nd_Annual Knowledge-Based Software Assistant Conference,
August 18-20, 1987, Utica, New York, Rome Air Development
Center, Griffiss Air Force Base, New York, 1987.

Lipp, M. E. (ed.), Prototyping: State of the Art Report,
Pergamon Infotech, Maidenhead, Berkshire, England, 1986.

55

Loomis, M. E. S. and T. P. Loomis, "Prototyping and Artificial
Intelligence," pp. 65-73 in M. E. Lipp (ed.) Prototyping:
o e t, Pergamon Infotech, Maidenhead,

Berkshire, England, 1986.

Martin, J., Fourth Generation Languages, Vol. 1, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1985.

Martin, J. and C. McClure, Software Maintenance: The Problem and
Its Solution, Prentice-Hall, Inc., London, England, 1983.

Mason, R. E. A., T. T. Carey, and A. Benjamin, "A Tool for

Information Systems Prototyping," ACM Sigsoft Software
Engineering Notes, 7(5), 120-125 (1982).

McCraken, D. D., "Software Systems in the 80‘s: An Overview,"
Computerworld Extra, 14(38), 5-10 (1980).

Mishkoff, H. C., Understanding Artificial Intelligence, Texas

Instruments, Dallas, Texas, 198S5.

Naumann, J. D., "Prototyping: The New Paradigm for Systems
Development, " MIS Quarterly, 6(3), 29-44 (1982).

Partridge, D., ificia ligence; Applications in_ the
u W ineering, Ellis Horwood Limited,
Chicester, West Sussex, England, 1986.

Read, N. S. and D. L. Harmon, "Assuring MIS Success," Datamation,
27(2), 109-120 (1981).

Rich, C. and H. E. Shrobe, "Design of a Programmers Apprentice,"
pp. 138-173 in P. H. Winston and R. H. Brown (eds.) AI: An

MIT Perspective, Vol. 1, MIT Press, Cambridge,
Massachussetts, 1979.

Rich, C. and R. C. Waters, The Programmer’s Apprentice Project,

Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1987.

Rich, C. and R. C. Waters, Toward a Requirements Apprentijce: On

the Bounda etween o ormal Specifi ions,
A.I. Memo No. 907, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1986a.

Rich, C. and R. C. Waters, The Programmer’s Apprentice: A
i , A.I. Memo No. 933, Massachusetts

Institute of Technology, Cambridge, Massachusetts, 1986b.
Schank, R. C. and P. G. Childers, e nitive uter,
Addison-Wesley, Reading, Massachusetts, 1984.

56

Scott, J. H., "The Management Science Opportunity: A Systens

Development Management Viewpoint," MIS Quarterly, 2(4), 59-
61 (1978).
Sommerville, I., Software ineerin Second Edjtion, Addison-

Wesley Publishing Company, Reading, Massachusetts, 1985.

Spies, P. B., '"Designing Systems for Users," Library Hi Tech,
1(1), 75-84 (1983).

Storm, I. L. and S. Preiser, "An 1Index of Complexity for
Structured Programs," pp. 130-133 in Workshop on
Quantitative Software Models, October 9-11, 1979, Kiamesha
Lake, New York, IEEE Computer Society Press, Washington,
D. C., 1979.

Tavendale, R. D., "A Technique for Prototyping Directly from a
Specification," pp. 224-229 in Proceedings of the Eighth
International Conference on Software Engineering, August 28-
30, 1985, London, England, IEEE, New York, New York, 1985.

Vosburgh, J. R. and M. A. Tanous, "Software Productivity Looms as
Aerospace/Defense 1Issue, "pp. 153-157 in Proceedings of

chnolo Strategies ‘88 Conference on the U.S. Army
Information Systems Engineering Command Advanced Technoloqy
jce ebrua 9~12 1988 exandri virginia, The

American Defense Preparedness Association, 1988.

Waters, R. C., "KBEmacs: Where’s the AI?," AI Magazine, 7(1),
47-56 (1986).

Waters, R. C., "The Programmer’s Apprentice: A Session with

KBEmacs," IEEE Transactions on Software Engineering, SE-
11(11), 1296-1320 (1985).

Wess, B. P. Jr., "Artificial 1Intelligence Techniques Speed
Software Development," Mini-Microc Systems, 17(11), 127-136
(1984).

Zelkowitz, M. V., A. C. Shaw, and J. D. Gannon, Principles of

Software Engineering and Design, Prentice-Hall, 1Inc.,
Englewood Cliffs, New Jersey, 1979.

57

13. ANNOTATED BIBLIOGRAPHY
13.1 GENERAL

Ary, D. and S. Saib, "TIMM/TUNER - The Intelligent Vax Computer
Tuner," VAX/RSTS Professional, 7(2), 32-40 (1985).

This article was written by two employees
of the General Research Corporation to
report on their usage of GRC’s expert
system shell, TIMM (The Intelligent Machine
Model) . They have used the knowledge of
experts in adjusting a VMS-based VAX
system’s parameters to suggest performance
tuning tasks. A "walkthrough" of a sample
consultation is given followed by
suggestions for system enhancements.

[Aid VAX Tuning)

Basili, V. R. and C. L. Ramsey, "ARROWSMITH-P - A Prototype
Expert System for Software Engineering Management," pp. 252-264
in K. N. Karna (ed.) Proceedings of Expert Systems in Government
Symposium, McLean, Virginia, October 24-25, 1985, 1IEEE Computer
Society Press, Washington, D. C., 1985.

The authors built two versions of a
software management expert system: one
rule-based; one frame-based. The systems
were developed in KMS, an expert system
shell used at the University of Maryland.
The knowledge bases contain possible causes
for aberrations in such measurements as
programming hours, computer time, and
number of changes. When an abnormal
software development pattern 1is detected,
an explanation of possible causes is
provided. When the prototypes were
compared, it was determined that the rule-
based version provided more complete
solutions than the frame-based prototype.
Results of the comparison are provided as
are plans for system(s) revisions.

(ARROWSMITH-P - Management)

59

Blanchard, D. C. and R. M. Myers, "The Knowledge Representation
Tool," pp. 137-147 in Proceedings of ROBEXS ‘85: The First Annual
Workshop on Robotics and Expert Systems, NASA/Johnson Space
Center, June 27~28, 1985, Instrument Society of America, Research
Triangle Park, North Carolina, 198S5.

In a sketchy, and, at times, difficult to
follow article, the authors present a
discussion of KRT (Knowledge Representation
Tool) . KRT is a LISP-based system that
aids a software engineer in the "System
Model" approach to structured analysis.
(The System Model uses data flow diagrams,
mini-specifications, and a data
dictionary.) KRT represents knowledge in
an object-oriented programming style;
process objects are subdivided until they
are refined to the level of mini-
specifications. The authors suggest that
KRT could aid software engineers in several
ways; the primary example given is in the
area of software maintenance.

[aid Structured Analysis
and Software Maintenance]

Blum, B. I. and V. G. Sigillito, "an Expert System for Designing
Information Systems, " Johns Hopkins APL Technical Digest,
7(1), 23-30 (1986).

The authors point out that knowledge needed
to develop software (i.e., software
engineering knowledge) can be viewed in two
major divisions: product dependent and
algorithmic, or application specific and
heuristic. The lao are suitable for
representation in an expert system
knowledge base. Using this division as a
guiding factor, the authors propose the
development of an integrated environment
for system building (ESB). ESB will
consist of three modules: a definitiqn
model for capturing application domain
knowledge; a transformation module where an
expert system changes the specifications
developed in the definitions module ipto
executable specifications; and a generation
module for generating the program.

{Aid Analysis, Specification, Design, Code Generation]

60

Cronk, R. N. and D. V. Zelinski, "“ES/AG: System Generation
Environment for Intelligent Application Software," pp. 96-100 in
Proceedings SOFTFAIR II: A Second Conference on Software
Development Tools, Techniques, and Alternatives, San Franclsco,
California, December 2-5, 1985, IEEE Computer Society Press,
Washington, D. C., 1985.

An integrated set of software development
tools and languages that is expert system-
based is described - Expert
System/Application Generator (ES/AG). The
knowledge base contains three types of
knowledge: factual, procedural, and non-
procedural. Knowledge is represented by
rules (for non-procedural knowledge) and
frame-like symbols (for factual and
procedural knowledge) . Non-procedural
control strategies, explanation facilities,
a user interface to the problem-solving
model, a LISP interpreter, and debugging
facilities are included. ES/AG runs in a
Unix environment and has been used at Bell
Laboratories for several applications
(e.g., equipment configuration and software
cost estimating).

[ES/AG)
Dunning, B. B., "Expert System Support for Rapid Prototyping of
Conventional Software," pp. 2-6 in Proceedings of Autotestcan
’85: IEEE International Automatic Testing Conference,

Uniondale, New York, October 22-24, 1985, IEEE, New York, New
York, 1985.

The author reviews conventional software
development methods and rapid prototyping
procedures. He then says that the
flexibility of a LISP processor and an
expert system shell (e.g., KEE or EXPLORER)
can make rapid prototyping easier.
However, he does state that the savings in
time and costs are highest during the
design phase. Implementation usually means
rewriting the entire prototype in a
conventional language; this process takes
seven times the original effort. Major
advantages and a few disadvantages of this
approach to software development are cited.
Overall, a rather terse 1look at a topic
that deserves more indepth analysis.

(Aid Rapid Prototyping]

61

Fickas, S. F., “"Automating the Transformational Development of
Software," IEEE Transactions on Software Engineering, SE-11(11),
1268-1277 (1985).

The author uses AI techniques to alleviate
the major weakness (undermechanization) of
Balzer’s transformational implementation
(TI) model. Fickas found that the
formalization of goals, strategies,
selection rationale, and human TI methods
were areas that needed to be addressed
before the model could be automated.

GLITTER was developed (written in HEARSAY
III) and used for creating a package router
and a small text editor. GIST was the
specification language used in GLITTER. It
was suggested that information generated by
GLITTER on problem-solving steps could help
in maintenance; research is currently
underway to classify possible changes to
specifications and to identify the
associated salvageable code.

Overall, a somewhat confusing article. the
small degree of automation offered may not
justify the use of a new system and
specification language.

[GLITTER/GIST - Program Transformation])

Frenkel, K. A., "Toward Automating the Software-Development
Cycle," Communications of the ACM, 28, 578-589 (1985).

Two automatic programming research efforts
are discussed: Intermetrics’ (Cambridge,
Massachusetts) compiler code generator, and
the University of Waterloo’s (Ontario,
Canada) real-time debugging system, Message
Trace Analyzer. While the author agrees
with some researchers who feel that expert
systems may be ‘'oversold" and that a
proliferation of AI languages could produce
much of the same problems that now exist
with the conventional software development
languages, she also feels that the need for
increased productivity is so great that any
avenue of relief will be pursued.
Furthermore, the work done now in expert
systems will Jjust add to the next
generation of software productivity tools.

(Aids Code Generation/Debugging)

62

Haradhvala, S., B. Knobe, and N. Rubin, "Expert Systems for High
Quality Code Generation,"™ pp. 310-313 in Proceedings of the
First Conference on Artificial Intelligence Applications, Denver,
Colorado, December 5-7, 1984, IEEE Computer Soclety Press,
Washington, D.C., 1985.

Intermetrics employees describe the
evolutionary process of developing an
expert system to aid in compiler code
generation. The final system was based
upon a modified version of Cattell’s (CMU)
Production Quality Compiler Compiler (PQCC)
project for the Bliss-II. Written in
Pascal, it runs on IBM 370’s. The
knowledge base contains some 500 production
rules; a depth-first search strategy is
followed. Development took three to six
person months.

{Aid Code Generation]

Harandi, M. T., "Applying Knowledge-Based Techniques to Software
Development," Perpsectives in Computing, 6(1), 14-21 (1986).

A discussion of the features of KBPA, a
kr owledge-based programming assistant
developed at the University of Illinois.
The author details the aspects and problems
in such systems and highlights the
prototype implementation of a design,
coding, and debugging unit. The paper is
good reading for understanding the issues
in knowledge-based techniques.

(Design, Debugging, Code Generation)

63

Harandi, M. T. and M. D. Lubars, "A Knowledge Based Design Aaid
for Software Systems," pp. 67-74 in Proceedings SOFTFAIR II: A
Second Conference on Software Development Tools, Techniques,
and Alternatives, San Francisco, California, December 2-5, 1985,
IEEE Computer Society Press, Washington, D. C., 1985.

The paper discusses the capabilities of a
prototype developed by researchers at the
University of Illinois at Urbana-Champaign.
The system addresses the specification and
design phases of software engineering.
Using the dataflow modeling method of
program design, the development process is
viewed as a series of refinements (i.e.,
leveling). The systen has three
components: a knowledge base with design
schemas, a data dictionary, and application
domain knowledge; a design refinement unit
which is an agenda~driven inference engine;
and natural language and graphics
interfaces. The prototype runs on a Sun
workstation, and, according to the authors,
has been used to develop small example
systems.

(Aid Specification/Design])

Hill, ¢C., "“A Software Revolution Looms on the Horizon,"
InformationWEEK, 94, 40 (1986).

This article stresses the quantitative and
qualitative improvements to be gained 1n
MIS software development by utilizing

automated productivity tools. It states
that many Fortune 500 companies are
employing such tools to eliminate
applications backlogs and improve quality,
citing significant reductions in
development schedules. It concludes by

emphasizing the benefits of development
tools to both programming staffs and MIS
managers.

(Future of MIS)

64

Janusz, P. E. and P. T. Eckert, "Software Quality Assessment
Measure," pp. 282-284 in Proceedings of the Annual Reliability
and Maintainability Symposium, IEEE, New York, New York, 1986.

The Army assessed the feasibility of using
expert systems to aid quality assurance,
Software Quality Assessment Measure (SQAM).
The authors used manuals and reports to
analyze one aspect of a QA officer’s job
(i.e., review of system storage allocations
for adequacy). That segmented task was
modeled using Teknowledge’s expert system
shell, M.la (for expert consultation) and
dBase III (for the operations checklist and
menu generation).

[SQAM System)

Kornell, J., "A VAX Tuning Expert Built Using Automated Knowledge
Acquisition," pp. 38-41 in Proceedings of the First
Conference on Artificial Intelligence Applications, Denver,
Colorado, December 5-7, 1984, IEEE Computer Society Press,
Washington, D.C., 1985.

The paper covers the use of General
Research Corporation’s (GRC) expert system
shell, TIMM. The author is a GRC employee
who used the tool to develop a prototype.
TIMM/Tuner tunes VAX computers to gain
maximum performance. The system is modular
in nature and contains seventeen knowledge
bases. The author points out that when
changes in the system configuration or load
occur (e.g., the number of terminals or
users increase), up to one hundred
parameters must be checked and adjusted
accordingly. Overall, a very brief look at
the prototype is given, with most of the
discussion centering upon the capabilities
and advantages of the expert system shell.

(TIMM/Tuner)

65

McCrone,

J., "Alvey Shows a Defence Bias," Computing,

5, 14 (1985).

Even though Britian’s Alvey was intended to
move research from the laboratory into

commercial use, the program has now
focussed on MoD (Ministry of Defence)
needs. This news article covers some of
the reasons why Alvey’s software

engineering program has become defense
oriented. Major reasons suggested were the
collapse of the Ada community’s projects
and NATO’s push for the use of Ada. Four
primary ipse (integrated project support
environment) projects are discussed. The
Eclipse project addresses an Ada ipse which
will run on the VAX minicomputer. Aspect
will port Ada to Unix software development
tools. MDSE (Mascot Design Support
Environment) is being extended to include
an expert system that will aid software

design and prototyping. Forest addresses
the specifications stage of system
development.

September

[(Alvey Projects)

Meyer, B., "The Software Knowledge Base," pp. 158-165

International Conference on Software Engineering,

in Eighth
Imperial

College,

London, United Kingdom, August 28-30,

1985, 1IEEE

Computer

Society Press, Washington, D. C., 1985,

A knowledge-based approach versus a
database approach to storing information
about a software project is discussed. The
project, referred to as Software Knowledge
Base (SKB), aids with the storage of

software components and their
relationships. Design criteria and
software relations and constraints are
included. The author feels such a

knowledge base could be used for all phases
of the development life cycle (e.g.,
specifications, design, testing, project
management). Also discusssed are follow-on
research efforts that are currently
underway at the University of California,
Santa Barbara (e.g., concurrent development
of an SKB in PROLOG and a relational
database using INGRES).

(Project Management)

66

Pidgeon, C. W. and P. A. Freeman, "Development Concerns for a
Software Design Quality Expert System," 1in Proceedings of the
22nd ACM/IEEE Design Automation Conference, Las Vegas, Nevada,
June 23-26, 1985, IEEE Computer Socilety Press, Washington, D. C.,
1985.

This paper reviews a number of articles
regarding software design systems. It is a
comprehensive study of the issues dealing

with systems based on Module
Interconnection and Program Design
Languages (MIL/PDL). The author gives an

example of interactions that take place
between human designers and an expert
system dealing with quality design.

[Design]
Ramamoorthy, C. V., V. Garg, and R. Aggarwal, "Environment
Modeling and Activity Management in Genesis," pPp. 2-9 in
Proceedings SOFTFAIR II: A Second Conference on Software
Development Tools, Technigues, and Alternatives, San Francisco,
California, December 2-5, 1985, IEEE Computer Society Press,

Washington, D. C., 1985.

Genesis 1is a Unix tool being developed by
the University of California, Berkeley
researchers to support software
development. It is primarily a Xknowledge
based resource and activities management
system. Its knowledge base contains an
entity-relation-attribute model that is
extended by rules about software resources

and the development process. The tool
consists of the following components: a
specification language; a resource

extractor (to provide traceability of
resources between requirements and the rest
of the system):; a resource manager (to
manage entities):; and an activity manager
(to check for inconsistency and to co-
ordinate the work of multiple programmers).
Research on this project has been in
process since 1983. Several planned and
possible enhancements are listed.

[GENESIS - Management)

67

\

Rawlings, T. L., "“A Technological Approach to Automating Software
Maintenance,"” pp. 147-149 in Proceedings of the First Software
Maintenance Workshop, 1983, IEEE, New York, New York, 1984.

The author says much software maintenance
could be eliminated with automatic program
generators where changes in specifications
just mean system regeneration. From user
specifications, a software manufacturing
system (DARTS) generates source code for
all computers in a distributed system. The
author feels much of the problem with
software maintenance lies in capturing and
communicating knowledge about the software
system. Using a knowledge based system to
capture such information 1is suggested.
Since DARTS captures the programmer’s
expertise, users can change specifications
and regenerate the program without
assistance from the original developer.

[DARTS - Maintenance]

Rich, C., "Artificial Intelligence and Software Engineering: The
Programmer’s Apprentice Project," pp. 29 in Proceedings of the
1984 Annual Conference of the Association for Computing
Machinery: The Fifth Generation Challenge, San Francisco,
California, October 8-10, 1984, Association for Computing
Machinery, Inc., New York, New York, 1984.

Rich presents a briefing on the status of
the Programmer’s Apprentice Project at MIT.
The goals are presented: to develope an
intelligent assistant for progranmnmers.
Information about the application domain is
provided: how programmers analyze, modify,
verify, document, etc. the programming
process. Plans for a new program editor
and its capabilities are discussed; the
new editor will allow many logical changes
in a program to be achieved by one
command.

(PROGRAMMER’S APPRENTICE - Analysis/Design]

68

Rokey, M., "The Dataflow Architecture: A Suitable Base for the

Implementation of Expert Systems," Computer Architecture News,
13(4), 8-14 (1985).

The author proposes the dataflow model of
architecture over the conventional Von
Neumann style for building expert systems.
One major advantage listed is the inherent
parallelism in the dataflow model leading

to more efficient rule-searching.
Furthermore, the problems of incremental
change can be removed in this model. The

paper suggests that it may be worthwhile to
build systems with such a model.

(Design)

Ruth, G. R., "PROTOSYSTEM I - An Automatic Programming System,"
pp. 215-221 in C. Rich and R. C. Waters (eds.), Readings in
Artificial Intelligence and Software Engineering, Morgan Kaufman
Publishers, Inc., Los Altos, California, 1986.

The paper discusses a research project
underway at MIT. The PROTOSYSTEM I project
has the goal of taking user specifications,
automatically designing the program, and
generating the code. To date, only the
PL/1 and JCL code generating modules have
been developed.

(Code Generation)

69

Schindler, Jr., P. E., "An Intelligent Way to Develop Software,"
InformationWEEK, 71, 17 (1986).

This article contends that knowledge-based
systems can be employed in traditional

software development environments. Such
systems can retain critical design
information in the early stages of a
project for use in later stages. The
article also indicctes IBM’s recent
interest in AI applications. This 1is

evidenced by IBM’s introduction of a
knowledge-based COBOL structuring tool and
expert system shells for VM and MVS
systemns.

{AI for Software Development]

Stephens, M. and K. Whitehead, "“The Analyst ~ A Workstation for
Analysis and Design," pp. 364-369 in Eighth International
Conference on Software Engineering, Imperial College, London,
United Kingdom, August 28-30, 1985, IEEE Computer Society
Press, Washington, D. C., 1985.

Requirements analysis (CORE) and design
(MASCOT) methods are supported via expert
systems and knowledge base techniques in a
personal workstation, ANALYST. The
graphics and windowing capabilities are
written in PASCAL; the rule-based methods,
and storage and retrieval of application
information are written in PROLOG. The
authors feel that by wusing a knowledge-
based approach, new rules can be added as
needed and new methods can be added to
support other phases of the software
development life cycle. Shortcomings of
the system’s performance as judged against
human experts are cited, as are potential
system enhancements.

(ANALYST - Analysis/Specs/Design]

70

Studer, R., "Knowledge-Based Software Engineering Environments,"
Computer Physics Communication, 38(2), 277-287 (1985).

A method is proposed for controlling and
managing communication between team members
working on a project that is organized in a
decentralized manner. A distributed
knowledge-based software engineering
environment (DSEE), is used to collect and
distribute information to team members.
The knowledge base contains four types of
information: objects and their
relationships in a data base; structure and
responsibility of the project team;
description of each tool provided by the
system; and team member skills and
experience levels, as well as team
function. The Temporal Hierarchical Data
Model with Petri Net concepts (THM-Net) has
been chosen as the architectural model for
the systen.

(DSEE - Project Management)

Sussman, G. J., "Intelligent Support for the Engineering of
Software," pp. 397-399 in Eighth International Conference
on Software Engineering, Imperial College, London, United
Kingdom, Augqust 28-30, 1985, IEEE Computer Society Press,
Washington, D. C., 1985.

A short article that suggests other
branches of engineering (e.g., electrical
engineering) may be able to contribute to

the process of software engineering. The
problems of debugging are cited. Al
research in areas of formulating

theoretical constructs as computational
algorithms for software development is

suggested. The author notes value in the
LISP-family of tools in terms of recursion
and manipulation. He feels such
"flexibility" could support rapid
prototyping.

(Aid Debugging)

71

Wolfe, A., "Software Productivity Moves Upstream," Electronics,
58(12), 80-86 (1986).

The article focusses on the work being done
in the area of automating the software
development life cycle, especially those
phases ‘“upstream" from code generation.
Research endeavors are discussed: MCC’s
LEONARDO (design phase); the Software
Engineering Institute’s SOFTWARE FACTORY
(all phases); IBM/Japan’s PROMPTER (code
generation); Lockheed’s work in low-level
design; and TRW’s work on design tools and
cost models. The author says that testing
and maintenance are major issues that must
be addressed. With NASA and SDI efforts
increasing, the importance of qguality
assurance and testing to detect and correct
all possible errors is paramount. With
automated design and documentation,
maintenance will improve.

[Current Research]

13.2 PROTOTYPING

"AI Environment Speeds Software Development," Systems and
Software, 3(8), 111-118 (1984).

This paper discusses the advantages in
using the Symbolics 3600 environment for
software development and rapid prototyping.

Beregi, W. E., "“Architecture Prototyping in the Software
Engineering Environment," IBM Systems Journal, 23(1), 4-17
(1984).
The author examines various defects in
present day software methodology. A
desciplined approach, utilizing formal
specification techniques, rapid
prototyping, and static and dynamic

behavior analysis techniques to verify
system expectations is presented.

72

Bottom, J. S., A. D. Bernard, and K. W. Anderson, “"Application
Prototyping with Microcomputer Database Managers," pp. 60-73 in
Proceedings of the _Office _Automation Society International
Conference and Workshop for Office Professionals, September _3-6,
1985, San Francisco, California, Office Automation International
Society, 1985.

The paper details the various tools that
are essential for rapid prototyping.
Various commercially available
microcomputer database packages are
compared in terms of ease of use and power.

Carey, T. T. and R. E. A. Mason, "Information System Prototyping:
Techniques, Tools, and Methodologies,® INFOR, 21(3), 176-190
(1983).

The paper reviews prototyping techniques in
use. A number of prototyping tools, their
techniques and methodologies are discussed.

Gremillion, L. L. and P. Pyburn, “"Breaking the Systems
Development Bottleneck," Harvard Business Review, 61(2), 130-137
(1983).

Three alternative approaches to the
traditional life-cycle approach are
presented. The purpose of the proposed
mathods is to get the user involved in the
process of software development. Criteria
for selecting the appropriate development
strategy are discussed.

Johnson, J. R., "A Prototypical Success Story," Datamation,
29(11), 251-256 (1983).

This article discusses various levels of
prototyping. The author presents
development situations where prototyping
and fourth generation languages yield best
results.

Loomis M. E. S. and T. P. Loomis, "“Prototyping and Artificial
Intelligence," pp 65~73 in M. E. Lipp (ed.) Prototyping: State of
the Art Report, Pergamon Infotech, Maidenhead, Berkshire,
England, 1986.

In this paper, the advantages and
disadvantages of applying artificial
intelligence techniques for rapid
prototyping are discussed.

73

Mason, R. E. A., T. T. Carey, and A. Benjamin, "A
Information Systems Prototyping," ACM Sigsoft

Tool for
Software

Engineering Notes, 7(5), 120-125 (1982).

This paper discusses an "architecture -
based® methodology, where a prototype is
developed using interactive scenarios.
ACT/1 is a development tool specifically
designed for this purpose. Its usage as a
product specification and production tool
are examined.

Naumann, J. D., "Prototyping: The New Paradigm for

Development," MIS Quarterly, 6(3), 29-44 (1982).

This article discusses various principles
underlying prototyping. Of interest is a
graphic cost comparision between the life-
cycle and prototyping approach. Exanmples
of projects developed by prototyping are
presented.

Spies, P. B., "Designing Systems for Users," Library
1(1), 75-84 (1983).

Design errors account for more than fifty
percent of the overall development cost.
According to the author, this is the
motivation for rapid prototyping. Examples
of success with the prototyping approach
are cited.

Systems

Hi Tech,

Wess, B. P. Jr., "Artificial 1Intelligence Techniques Speed

Software Development, " Mini-Micro Systems, 17(11),
(1984) .

This paper outlines the ways in which
Artificial 1Intelligence techniques (e.g.,
Prolog) were used in the development of a
commercial product.

74

127-136

APPENDIX A: SOFTMAN SCREENS

The run-time version of the SOFTMAN system is resident on a
5 1i/4" floppy diskette. A "SOFTMAN" command will 1load the
progranm, After entering the current date, the user interacts
with the system via a "Main Menu." By positioning the arrow on
the same line as the desired selection and pressing "“Enter," a
menu selection is made.

Upon choosing an option, the user must respond to a series
of questions. Responses are primarily in the form of numeric
data. The number and nature of the questions vary with the
option chosen.

Once the series of questions has been completed, or the
operation (e.g., file deletion) accomplished, the "Main Menu" is
again displayed. When no further options are desired, the user
can return to the "Main Menu," place the arrow on the same line
as the "Exit" option, and SOFTMAN will return the user to the

operating systemn.

75

L86T ‘'Axenagqad JOo Yyzg o7

L8-2-G : 9a1dwexy

*93ep 9Yyl I03 ATUuo SLISDIQ °Sn asesId

g88-2—~% : AA~uw-pp se ajep
sAepoy I93Us 9seaTd

76

dn }
umop t

UOTJD9 T3S Ss3ayeuw <NINILIY>

(we3ysAs NVWIJOS) 3TXd

e3ep sorIxjsw ajepdn

ajepdn ue aaatxlay
UOT3R3TNSUOD PTO Ue 3A3TIIAY
Ia913109ds yazed 3osload abueyd
@3eq abueyd/3ss

3o09foxd e a3araq

s3oaloxgd jo LAxojoaxtd
309(foxg e ajzsrdwoDd

309foagd p10 3TnSuoD

3oaload meN

e
————

ANVHWOOD ¥ JSOOHO JdSsvVI1d

NANIW NIVH

77

MOAONIM LNIWWOO

*s3oaload jJo Ax03091Tp 99Ss 03 <IBJUY> SS3Ad
*MOU 3TX3 03 (0 ®© I93ud

*SI33397 udsmlaq ur ssoeds ou
pue sJ93oeleyd g unuwixew aAey pinoys 3I
3THBTP ®© y3zTM urbaq JON PINOYs aweu ayJ

C¢LSHL : 309(oxd auyy 103 Dweu e I33U3 I¥sSEITd

LOdLodd MIN

73

|

|

~ — S— HE

MOONIM LNIWWOO

HOTUYWI AYVRH

‘wnurXew sIajoeleyd 0z FO 9 uUed Iweu Iyl

: x9beuew ayjy JO sweu 3ISeT I93ud Isea1d

LOILO¥d MIN

79

MOONIM LNIWWOI=————== — g

80

"O39 JTIOVY0 9{YTT 1OV ¢
039 epvy °¢
*039@ TOoqoD ‘uexjzaod ‘Teosed °1

: @sn TITM nodk adAjy abenbuel e asooys asesald

- . e S S vy G =

LOodrodd MAN

(sautTT 00002 ueyy 2I0w) abpaeT °¢
(s@uTT 0000Z - 00S§Z) WNTPaW °Z
(sauttT 0062z ueyy ssay) Trews °T

! Jaqunu s3T Aq HBUTMOTTOF @Yyl JO U0 3Isooyd

309load ay3l Jo 9271S 3poo pajzewT3ISd aY3l I93UD 9seald

LOILodd MAN

81

: MOONIM H.ZN«EOO‘I\lHHU

A : buTpoo aAT3oe Hutop ©9Tdoad Jo IdqUNU IYJ IIJU3 ISeIJ

LOILO¥d MAN

82

MOQNIM INIWWOO

L8-T-T : (AR-uu-pp) se ajep Jaxels HUTPOO I93U3 Iaseald

LOdLOdd MIAN

MOANIM INIHNOI=——==

ve

(syjuow ut) -309(oad aysy
ysTutjy o3 pairnbaa swurl pajewyls? ayl I9IUI ISEITd

LOIrodd MIN

84

dn 1}

umop t

UoT30919sS sIayew <NJNLIYE>

(wa3s&s NVWIJOS) 3ITXH

eaep soTtalau ajepdn

a3epdn ue aaaTIjlayd

uUoT3e3[NSUO0D PTO UeR 3A3TIAY

umauaomam yyed yo=0(oag abuey)

a3eqg abueyd/39s

jo9loxgd e @3ar=d

syoaloag jyo Axoj3osa1d
uumnoum e a3a1dwod

309(oxd PTO ﬂ:m:ou‘

3o03foxg msN

ANVYWWOO Y JdSOOHO JdSYIId

ONFW NIVYH

85

¢LSHAL

MOANIM "LNIWWOO=

*MOU 3TX® 03 0 e JI23juld

*sjoaload jJo Axojzoaatp
ayay 99s 03 (x83ug) uaniyay ssaxd usayl
sweU 3O0PX9 9YJ IoquUIaWaI JOU OP NOA II

309(oad ayjl Jo sweu aylz IIJud asead

LOdL0dd ¥ ODONISOOHO

86

UOT309 39S Ssaeuw <NIANLIA>

Il

nusw JIaTTaes o3l adeosd

9397dwod 03 syjuouw pajewIlsly

dn putpoo Jo 3xe3s Jo 3ajeq
umop t SI9POO SATIO®R JO IaqunN

UOT3E3TNSUOD Y3ITM SaNUTIUOD ‘

nusuw Iyl woxJ 3IT JO09T9S
usayl ajewrisa Aue abueyo o3 juem nok JI

WAIAIW : 23o09load Jo @z1s pajewutrlysdy

T : Axobhajeo apenbuerd

OIYWA XUYKH : jo9(load ay3y jo asabeuey
¢LSAL : 309(oxd ayy jo aweN

SILYWILST LOodLodd

87

UQFE3IOD[IS SoNeuw <NUNLIY>
(wa3sAS NYWLJOS) ITXT
elep sotxjaw ajepdn
aj3epdn ue aaA9TIIY
uotrjel[nNsuod PTO ue aaAaTIIAY
I913T03ds yjed 309foad abueyd
ajeq abueyd/31as

19aloxd e a3arad

sjoaloxg Jo Ax0309x1d

, 309foagd e ajzsrdwod Vi

dn | 309(oxd pTO 3ITRSUOD ‘

uMap q“ 3oaloxgd moN

ONVIWWOO ¥ dSOOHD Jsvdaild

ONIW NIV

é
anuT3luodD 03 A Kue ssaad

D G Sup @ G SN IR G SRR THD Gmb R VD Sy

S10drodd 40 ARYOLOIHUIA

¢LSdL

89

TLS3L

UOT30913S sayeuw <NINLIY>

— e

—

e3lep SOTI3™”uw ajepdn
a3epdn ue aaaTaIlay

uotTjielTnNsuo) pTO Ue 2A3TI3IaY

I3T13Toads yjzed 3oaloxg abueyd
@3eg abueyd/3ss

3o09loxg e 939t1ed

sjo9(oaxgd jo Axojoaxrq

309(oxg e a391dwod

309foad pro _3TnNsSuod

jo09(oxd MmeN

dn
umop t

ANVWWOO ¥ JSOOHD dISvaAId

NNIW NIVH

(w@3sAS NVWILJIOS) 3ITXd

¢

90

.

~ ON sax : (u/X) aans nok aav
MOANIM ILNIWHWOOD=——==

*q3IATIad 39 TIIM LOIALO¥d JTHL JO
SYALAWNTAVd ANV SNOILVIINSNOO TIV asnvoddg
oI CodNd SIHI FILITIA OL LNVM 10X ANS 4

‘mou 3TX? 03 0 ®© JIa3jud
K1o3o09aTp @9s o3 (I93ud) UINIBY SSIad

: (uoTsu@3x3 3noy3TM) 333TaP
€LSAL 03 309foad ay3z JO sweu aYlx I33ud

SI0dLodd 40 NOILITIA

9N

dn 3
uMop t

UOTO3TIS Sayeuw <NINLIY>

(wa3sAs NVYWIJIOS) 3ITXI

eaep sotrIxlsu ajepdn

aj3epdn ue 3AaTII3Y

uoT3e3 NSU0) PIO0 uUue 2ATIINY
x9t3Toads yzed 3oaload mm:mno‘

?3eqg abueyd/3ss
j309floxg e 239T1=ad
s3oaloxg 3o Axozoaatd
j09loxg e 939Tdwod
3o0sload PTO _3ITNSUOD
joaloxd MmN

ANYWWOO ¥ JSOOHD ISVATId

NONIW NIVH

92

L86T ’'Axenaqsd FO Y3ag aod
L8-2-G : 9a1dwexy

*93ep a9yl I0J ATUo SIIODIA 9sn aseald

88-2-V : LA-uwu-pp sSe ajep
sAepol x93jus asesaTd

93

UoT309[3as saxeuw <NJINLIA>

(wo3sAs NVWIJOS) 3ITXA
ejep soTI3suw 3jepdn
ajepdn ue BaA3TIIBY

uotlel(nsuo) pro ue m>mauumm‘

IatIToads yaed 3o09(oad abueyd
ajeq abueyo/3as
joaloxgd e a3918q
s3oaloxg yo A10309xTQ
jo09foxg e 9387dwod
303 (oxg pTO 3ITNSUOD
jo09foad MmaN

dn |
umop 1t

ANVWWOD Y JSOOHD dSYI'Id

ONIW NIVRW

94

I

==MOANIM LNIWWOOD

-ax913T1o9ds yzed HUTISTXS
ute3ax 03 juem nok 3T 0 e Id3uUg

: z913Toods yjed mau Isjua Iseald
\:¥ : sT x91310ads yzed juaxand ayy

JIIIIOA4S HILVd ONIODNVHO

w
o

UOT}O3[3S Sayew <NYALIA>

(u23sAS NYWIJOS) 233TXI
ejep sotajlsu ajepdn
a3epdn ue aaatralay
uorjelInsuoc) pio ue m>mauumm‘
1a9t13Toads yjzed 3ooloxg sbueyd
@3eq abueyd/3as
3o9loxgd e aj3eTad
s3o9loxg jo Axojzoaatd
3o9foagd e ajzatdwod
dn 4 303loxg pro 3ITNSUOD
umMop ¢ 309(oxgd MSN

——— e e — e
———— r——

ANVWWOO ¥ dSOOHD dJASVIId

ANIW NIV

96

. |

MOONIM ILNIWWOOI=== =

*MOU 3TXD 03 0 ® IXa3jujg
*s3o09floxd 3o Axojzoaatp

3Yyy 99s 03 (J93uld) uaniay ssaxd uayly

3weu 30eX? Y3l JI2qUIAWDI 30U Op nNok II

TLS3AL 309foxd sy3 Jo aweu ay3l IIJU3 aseald

IOALodd ¥ SNISOOHD

97

UOTIO3TaS sayeuw <NINLIA>

pPa9309T9sS 3UON

dn 3
umop 1t

SNOILVITINSNOD J0 ISIT1

98

anuTjuoo 03 Aay Aue ssaxg

MOONIM ININWWOOD

1

Auep ooy ! sunx xajndwo)d
Jony ooy, : 2WuTl NdO 0T :
Auey ooy : sSI0a1I9q oT
Mo : AK3tAaT3onpoag [0}
‘M0 : 92Ts apo) oT
aNPIBAD : 9Tnpayos auwry oT
88-2-2 ! uoTjelTnsSuod jo ajzeq
S9X : S93RWTI}ISS O3 Speu SUOTSTAIY
ST ¢ @391dwoo o3 syjuou pajeutrysy
98-T-T : butpoo 3o 31e3Ss Jo ajeq
0T : SI3POD Jo Iaquny
HOIQ3N : 92TS 9pod pajzeuwuriysy
1 : K1o0bazes spenbueq
TYMIVOY : sueu axsbpeuely
TLSAL : sweu 3093(aag

n

PuITy Ndd
sabueyo jo ‘*oN
sunx jo °ON
sjuawalels Jo °*ON
sanoy xaumexboxd

abejs

99

dn }
uMop 1

UOT303[3aS sa)yewW <NINLIY>

(w@3sAs NYWIJOS) 3ITXI
ejep soTxjauw ajzepdn

a3epdn ue m>mﬂuumm‘
uoT3e3[NsSUo) pPI0 Ue SA9TI33Y
I913T0oads yized 3oaloxg sbueyd
93eqg abueyd/3es
joaloxg e a33T1ad
sjoalfoxg jJo Axojo9atd
309(oxg e aj3atdwod
309(oad pTO 3TNSUOD
3o09(foad MaN

ANVWWOD ¥ JSOOHD JdSvd'ld

ONINWN NIVK

100

1(

MOONIM LNIWWOO e

‘MOU 3TX3 03 Q0 © I33ulg
*s3o09foad 3o Ax0308aTP

ay3 99s 03 (x923ug) uanlxay ssaad usyly
aWeU 3oex? 9Y3 JIaqUWaWAI JOU Op NOA IFI
309foad ayj3 ‘3o sweu 3aYy3 I93ud Iseald

J0dL£0¥d ¥ ONISOOHD

101

MOANIM LNIWWOO

UOT309T9S Ssayew <NINILIY>

Pa30a T3S DUON

88-2¢-28 €
dn 88~¢-2¢ 4
umop t| 88-z-2¢ T ‘

?jeq Jaqunp
9A9TI3I®X 03 9j3epdn auo asooyd

SdLV¥ddn 40 JISIT

102

v""

snutjuoo o3 A9y Aue ssaad

S
L8-T-T
ot
ROIAIN
T
TYMIYOVY
TLSIL

e
———

]

MOONIM INIWWOO==

€t
L8-T-1
ot
WNTAIN
T
TYMIVOVY
TLSAL

23epdn axojag

g8g8-2-2 : 93epdn Jo ®a3eq

d1vadn 40 SITIVLIAA

939 Tdwoo 03 sSyjuow pajewIlsy

putpoo FOo 3Ie3s Jo a3jeq
SI9p00 3O Iaquny

92TS 9pooO pojeurisy
Aaobajeo abenbuel

aueu Jabueuey

saweu 30afloxag

103

dn |
umMop t

UOT3O9[3as Sayew <NYALIY>

—

(we3sAS NYWIJIOS) 3ITX
BlERp SOTajauw mumvabﬂ'

?j3epdn ue aA9TIIDY
uoTielTnsuo) pro ue aaatalay
I9T3Toads yjzed 3oaloag sbueyd
@3eq abueyd/3ss
joaloxd e 93arad
s3oaloag Jo AxojzoaxTd
j30aloagd e 2391dwod
303foxd pPTO 3ITNSUOD
joaloxd maN

ANYWWOD ¥ ISOOHO dSVITId

ANIW NIVRW

104

: paomssed T : Joqunu 3dwaillv

adeosy ssaxd uayjl Mou JTX3 03 jJuem noik 3I

papunos oq TITM uxefe ue
pue po)ooT o9 TTTA walsAs ayl usyl TTes
nok JI ‘paomssed 3991100 I3YJ Idju3 03
spdusjje € JO wWnWIXew e 3aey TTTM NOX

axay piomssed sSsa00e 193U 9seald

105

anuTjuod 03 A9y Aue ssaad

poaepdn soTalon

106

dn i
usop t

UOT3O9T9S saxeuw <NINLIY>

—

(wd3sAsS NYWIJAOS) 3ITXd

e3ep SOTI3dW a¥jepdn

93epdn ue 3aAsTalay
uoT3je3lTnsuo) pTO ue aaaTIay
1a1JToads yzed 3oaloxag =bueyd
@3eq abueyd/33s

jo9loxd e 9j3atad

sjooloagd 3o Aaxojzoaatd

joaloxg e 9j3etdwod

309(oxd PTO 3ITNSuod

jo9foxd MmeN

ANVWIWOD V¥ FSOOHD dASvaA1d

NNAW NIVK

107

APPENDIX B: SAMPLE CONSULTATION

A sample consultation is run in SOFTMAN by choosing the
“Consult" option from the main menu and entering the project
name. Then, the user selects the coding stage and provides
numeric values for the five input development parameters.
SOFTMAN calculates metric values and responds with a bar menu
listing detected anomalies.

In some cases, the user can analyze each anomaly. By making
a selection from the menu, SOFTMAN will suggest solutions based
on the type of anomaly. In some cases, the user is asked to
revise initial project parameters. When the consultation is
finished, it can be saved for later viewing by choosing the

“Save" option.

109

UOT3O9TaS Sayew <NINLIU>

——

paep sSotajsuw ajepdn

ajepdn ue aaAaTI3aNA

uoT3e3l[NSUO0D PTO U 3A3TIIBY
I913T0o9ds yjzed 3oaloxg sbueyd

@3eg @bueyd/3ss

joaloxgd e 933T1aq

sjosloag jyo Axo309a1q

309foxg e 9j3atdwod

dn i j3o9foxd pIO 3ITNSUOD
umop t 309loag meN

ANVWWOO Y JSOOHO dSvdld

INIWN NIV

(ue3sAs NYWLJIOS) 3ITXd

¢

110

MOANIM LNIWWOO

*MOU 3TX3 03 0 ® Iajujg
*s309(oad jo KAxojoaatp
ayy 99s 03 (I9jud) uanlay ssaad uayy
aweu 30eX3d aY3l ISQqULIWIX Jou Oop nok I

13s93 309foad ayy 3o sweu ayjz I93ua IseITd

LOdLOdd ¥ DONISOOHO

m

— MOONIM LNJIWWOO

|

UOT309T9S Ssajxew <NINLIA>

= S |
uorTjejrnsuod YitM anuitjuo

nusw JIaTTaIea o3 adeosly

ST : 93917dwodo 03 syjuow pajzewrisd
dn } 98-T-1 : pburtpoo jJo 3ae3Ss 3JOo d3ed
umop t 0T : SI9pPOO BATIOER JO I3QUNN

112

nuaw ayl woxy 3IT 098 [aS
uayy ajewryss Aue abpueyo o3 juem noik 3II

91039q PISTAdI uaaq aaey 309(loxd sTy3z Jo sajzeuwrisa ayy

WATIA3NW : 309foad jJo 9zts pajeurysd
T : K1obojeo abenbue]
TYMIVYOVY : 309loxd ayy jo asbeuey
TLSAL : 309(oad ayy jo sueN

SILVWILSH LOodL0odd

il

UOT3O09TaS saxeuw <NJINLIY>

‘PuTpoO ¥/3eT ‘¢
*buTpPOD STPPIN 2 _

"butpoo Atxed ‘T4

dn
umop t

abeas burpoo ayz Io03
90TOUD B 309T9s 9seald

dOVLS ONIAOO

113

snutjuoco o3 K8y xayjo Aue 10 3TX® 03 oSd 3ITH

usaxos uo padkerdsTp st uey3z dyay aaou 386 o3 Axjus
Juelq ® uo <xajuxg> ssaaxd ueo nok uoyrisanb Aue o4

3sSatT3y ejep 9yl
3097100 pue 3bexs sTyjz e wexboaxd osyYy3z AT U3Y]Y
ejep STY] 9ARY 30U Op NoA FJI °038 sunx I93ndwod
‘SBUTT 9pP0O Y3TM butresp 23oafoxd oy3z Jo ssaaboad
ay3 3noqe suorjlsenb oswos paxse aq TITA Noik MON

114

§

l

diey saou 103 <Ix93uld> sSsaad —
MOANIM INIHWHWOI=————= e

*ssaooad
butpoo ayy utr juads aaey sasuwexboad ayj

jeyl sanoy Jo Jaqunu Te303 3yl ST STUL

¢ butpoo ay3 ur xe3y os juads uaaq
aAery sanoy Jauuwexpoxd Auew MOH

SLNINI NOILYILINSNOD

115

————— —

uxnisx o3 A9y Aue ssaag ﬁ

— =—===MOUNIM LNINWOO=———=

|

* butunwexpoad
9TTymyzaom bHurtop sanoy 9 3seal 3e spuads zsuwmeizboxad poob
e Aep Huryaom anoy-g e UT 3jeyl pajou ST 3T abeasae ayl uo

*319Y pIpNIOUT JLON ST uoTjejuawunoop HUTITIM
Io3 juads swrl °swexboad ayjz buriysey xo burhbngep ‘Hurpos
ATTenjoe ut juads awry ayj se psuTiop axe sanoy xauwebold

‘3usawdoTa@AdpP ayjz ur Iey os juads sanoy
Jauwexboad Jo zeaqunu sy3z aozy diay Pa1Te39p 3Iow ® ST STYJ

116

Qﬁws 2I0W J03J <I3JUI> SS9aAd

_ — _MOONIM INTHWOD

*ssaosoxd
putpoo ay3z utr juads saey sisuwmexboad ayjz
jey3l sSInoy Jo Iaqunu Tel0ol ay3z ST STYJL

000T ¢ burpoo a8yl ur aey os juads uaaq
aAry sanou Jaumexboaxd Auew MOH

SLNINI NOILVLIASNOD

117

lll]i:l‘ll%

dray aaow 103 <IdUF> Ss3ad

*S3UTT] JUSBWWOD IO
apod JO UOoT3ejusuUNOOop IpnIout LON SI0A
STYJ, *IeJ OS Po3eIdUSD I3POD ITQRINDIXI
Jo saull JO JI3dqunu Te303 3yl ST STUL

118

00T ¢ deJ os pajexsauab uasaq aaey apod
2Tgqe3NO9X?d® JO sjusawajels Aueu MOH

SLNdANI NOILVIINSNOO

——— — ettt —————— e s e

mamm‘muoﬁ I0J <I93uld> ssaxd - —
MOONIM LNIWWOO

*Iey os apeuw (s3jdwsjje aytdwoo
Aue 3jo0u pue suoT3inNoaxa pajdwusije) sund
I93ndwod JO Jaqunu [e303 3yl oaIe asoyl

19

00T ¢ Bbutpoo ayjz ut aspeu
ussq aAey sunx aajndwoo Auewu MOH

SLAANI NOILVLINSNOD

diay aIow JI0J <I93ug> SSaxd

MOANIM LNIWRWOO

‘abueyo sxajaweaed Jo asbueyd aaIn3zonias

Teotb

0T ' (sorjuewas pue xejuls) TeaAowax

‘abueyo xoaas Aue se paurioap sT abueyo
¥ -(butpoo 3Jo Aep 3sITy 9yl wWOIJ) auop

butaq

sem DHuipod 9TTYM 3IBM3IJOS 9Y3} UT

opeu sabueyo Jo Iaqunu Te3O03 3yl ST STUL

0001

¢ IR OS Ipeuw Uaaq IARY
9poo 03 sabueyo azemijos Auew MOH

SLNINI NOILYLINSNOD

120

*sIaumexboad ayjlz
Kq poswrojaad suna xa3ndwod 3ayjy [Te ut

auT3} nNdO JO 3Junowe Te303 3yl ST STIYL

000T ¢ burpoo ay3z utr xey os juads uaaq sey
A s03s) QUWTIZ Abmuv x93ndwod yosnuw MOH

SLNANI ZOHB¢BADWZOU

-y -

diay aaow I0J <Id3uUi> SSaId _

121

UOTJIOS8T9sS sSaeuwl <NIYNLIT>

butaAaes 3noyatm 3TN
3Tnd pue 3aaes
Auen 00g suny xajndwo)d
YyonW 00J {auwTJg AdO

122

Auel oo sxoxay

Mno1 Aj3TAarjonpoad

dn *M°0 yybusy apod
umop t anpIaAQ ITNPIYOs ST,

0#00%#W0>CH 03 9UQ 3/sooyo 9seald

dOVLS SIHL LV SKITIONd 40 LSI

ON sSax : wdTqoad sTY3l SAT0os o3 Huthiyz uyr diay juem nok og

‘309(oad ayy jo uorjzsardwoo sy3z 103
39S pey nok swr3l pajewrlss a9yl passoId
?2Aey nodk 3jey3z sajzedTPUT @3ep s,Aepog

(s00T) oSV

($69T) €9¢L

ranyep

rantea

: Teur3do

: Ten3ov

123

MOONIM INIWWOOD

ON S9x I 93BWTJ}S?® STYJ] ISTA2I 03 juem nok og

ST ! ST 33eWIISD JUaIIND YT
paxsjue axam sxajaweded j309foad ayjz usym
xasn ay3y Aq uaarbh uorzerdwoo 3o09(oad xo03

paatnbax auwT} 8yl I0J 23RWTISD DY) ISTASI
03 sT watqoxad sSTY3 aaros o3 Aem Atuo ayy

JdINAIHOS LOILOUd IANAYAAO ¥Od JTIH

124

=== MOUNIM ILNIWWOO — =

ON

e ! d3jRWTIJISO MU I393Ud@ I3¥seald
sax ! 93BWTIS® STY] I9STAdI 03 juem nod odg
ST ! ST 23eWI]3Sa 3Uaxand ayyg

poI19ju@ axam sIajawexed joaload ayz uaym
Iasn 9ayyz Aq uaAatb uotrzsydwoo 308loxd 103
poatnbax swr3l 9yl I03J I3eUT]S3 3yl asTAdl
03 sT uwarqoad STyl 2ATOsS 03 KAem ATuo 3yl

dTNAIHOS LOJdLodd JdNAYIAO ¥0d dTIH

125

UOTI0DT3S SayeWw <NINLIA>

butaes znoyztm 3ITNY
3TN0 pue asaAes
Auel ool suny xo3nduoy
UONN ooJg 3wty NdD
Auey oog, sxoxag
MmoT A3TATyOonNpOIg
"1'0_y3buaT opoo §
30PISAO STNPAYDS |WTY

dn
umop 1t

93eHTISIAUT 03 BUO 3Isooyd aseatd

dOVILS SIHL IV SWATH0Nd 40 ISIT

126

e i

LS

anutjuod 03 Aay Aue ssaiad
MOUNIM LNJIWWOO

*3STT I01Id
aYy3l WOolIJ JIaqunu JIayjloue 3asooyd 3seaTd

*X°0 ST anTeA s3T
se xajawexed STY3l UT IOIIS OU ST 3IYJ

]

1272

UOT3D9TaS Sayew <NJNLIY>

putaers 3noyizTMm 3TN0
3TN0 pue 9AES

Auepy oog suny aajzndwod
yony oo SUTL NdO

128

Auep 00J, sx01xld

. mOT mu..;,.nuozuoum‘
dn 4 *¥°0 Yy3lbua apod
umop 1t aNPISAQ 2[NPaYOs SUTT

33ehT3SOAUT 03 U0 Isooyd aseald

IOVYLS SIHL LY SWITIOodd J40 LSI'I

ON sSax : warqoxd sTY3y SATOS 03] mcﬂhwp ut dray juem nok og

129

‘abuea Kjvarjzonpoad
STY3 UTy3zTM 3Jou ST wWeal 3joaloxd ayl
3eyl 93 eDTPUT SOTIJIaW a9yl ‘yauow e Ut
9poO JO S3aUTT 000T seonpoad xswwexboxd
abexaser ue 3Jey3l spxepuels burunssy

(%00T) 0000GZ :°nTeA
:teutado

(g0) o0T :®ntea
: Ten3ov

dn
umop t

UOTIOITOS saYewu <NINLIT>

purtaes jnoylztm 3ITNO
3ITN) pue 3aes

Auep ool suny xajindwod
yonW 00g {uTL NdO

Auelp 00, sSI0IIY

moT A3TaTjonpoad

*¥°0 Yyibua1 apod
anNpPISAQ 3INPaYDSs BT

23ehT3S9AUT O3 DUO IsSOOYD Isea[d

dO9VYIS SIHIL IV SHITHO0dd 40 LSII

130

ON

T

— e
e e— ——— ———

Sax : wagqoxd sTYU3 SATOS 03 mcﬂhuu ur dysy 3uem nodk og

P e

MOANIM ILNIWWOO —=

*spaIepuels
9yl ueyl IaybTy aae pIjeOTPUT sabueyd JO
Isqunu 9Yy3l aours auoaxd-aoxae sT 309loxd
9yl 103 peoajeasauab bursq ST eyl apoodo 3yl

(s001) 2°0

($0005) oOT

tanyTeA
: Tewtr3do

ranTeA
: Ten3ov

131

UOT309T9s sayeWl <NINLIY>

Bbutaes 3noyizTm ITNO
3TN0 pur 3AeES
Aue oog suny xajzndwod

yony ooJ swrl NdoO

Kuey oo saoxxd

mo1 A3TATionpoad

dn *M¥°0 Yyabue 9pod
umop t anNPIIAQ I3aTNPaYDSs Suly,

s

93ebT3sSoAUT O] BUO 3Isooysd aseaTd

dOVLS SIHL ILV¥ SKWITHOYd 40 &LSI1

132

||

ON sax : waTqoad sTY3 9ATOS 03 Hutrkay ur dray juem nok og

=== =====——MOJNIM INTWWOO

‘pojsem burteq sT sur3 I93ndwoo AT3soo
Jo 307 V °93Nn09xa 03 3aurl buor e ayej
3T buryew ST YoTYm welsdAs aylz ur smety
3Ie 3I9Y3 3Jeyl SI3eOTPUT 3WUT] 14O 3YL

(s001) oCF

(sc€€) o001

tanteA
:Tewutydo

:onTeA
: Ten3ov

133

dn }
uMsop t

UOT309[8S sayew <NJNLIA>

putaes InoylTM ITNO

, 3TN0 pue dAeS

Aue oo suny xsjndwod ‘
yony 00J 3wty NdO

Auew 00 sxoxxd

MOT A3TAT3IONPOId

*M*0 Y3zbuag 8pod
anpIsAQ aTNpPaYOS SUTL

23eHTISIAUT O3 SUO ISOOYD IseaTd

I9YILS SIHIL IV SWITIEOodd J40 LSIT

134

‘sunx Auew Os 3dAeYy 03
aorjoead poob 3Jou ST 3T °sunx J93ndwos
Auem o003 bHuryemw sT wesa3 3Iosafoad ayg

(g00T) T°O

(g000T) T

sanyeA
:teut3ydo

:anTeA
: Ten3ov

135

UOTJO3TasS sajeuw <NINLIT>

. butAes 3noy3zTM 3ITNO4
3TN0 pue aaes
Auep 0o, suny Ixa3ndwod
YO 00Jg {wTJg NdD

Auel ooJg saoxald

mo1 K3tAT3onpoad

dn | *M°0 yibus1 apod
umop t 9NPIDA0 2TNPIYDS ST,

93eHTISIAUT 03 SBUO ISOO0YD 3sSeaTd

D G S G GED M G G I GED TN GED CED WD GED GWD NS D N GED GES GED Ty EED GED wE D s i =

dOVLS SIHL IV SWAITHOYd J0 LSIT

136

]{i

_ N

ON sax ! STY3l op 03 juem nod aans nok aay
MOUNIM LNJIWHWOO

*LSOT 349 TIIM NOILVLINSNOD J0
aNNOY SIHL NI ¥¥d OS INANI ¥IVaQd IJHL
TIVY NIHL DNIAVS LNOHLIM IIXH NOX JdI

137

® & @ o o

138

uorjejInsuoo Hutaes

APPENDIX C:

Abstract Data Types

AIRMICS

Arrowsmith-p

Coding Phase

Coding Stage (SOFTMAN)

Data Flow Diagrams

Design Phase

Dynamic Metrics

GLOSSARY

A

0

o

139

OF RELEVANT TERMS

Data
whose
transparent to
defined by a
operations that
performed on it.

structure or type
implementation is
the user:
set of
can be

The Army Institute for
Research in Management
Information, Communications

and Computer Science, Atlanta,
Georgia.

A software management project
done as a Masters thesis, the
University of Maryland, under
Dr. V. Basili.

in which the
to

The SDLC phase
design 1is converted
computer prograns.

The coding phase is generally
divided into early, middle,
and late stages.

Software design representation
schemes based on data flow
between the different modules.

The SDLC phase in which the
high-level design of the
system is developed.

Metrics that are continually
updated.

Environment-Dependent Data

Expert System Development Tool

Flowcharts

Fourth Generation Languages

Frame

Frame-Based Approach

Functional Modules

GLITTER

140

Data determined by the
software and hardware
configuration; used to drive

the Softman system.

Software which helps in
building expert systems by
providing intelligent editors,
knowledge representation
facilities, database 1links,
etc.

Software design representation
mechanisms based on the
program’s logic flow.

Non-procedural languages which
have procedural components
(e.g., data structures and
procedures) incorporated, thus
relieving the user of such
details.

A collection of slots which
represent events, objects, and
their attributes.

A knowledge-based system
wherein information is stored
as frames.

Distinct, and independent
routines; each performing a
separate function (e.g.,
report generator and input
output routine).

Research project at the
University of Oregon, Eugene;

based on TI.

HEURISTICS

HIPO Clarts

How and Why

Implementation and Verification
Phase

Inference Engine

Input Parameters

Intelligence/Compiler

KBPA

KBSA

L

141

Rules-of-thumb that are used

for decision making by
intelligent systems.
Hierarchial Input/Output

Diagrams; data flow diagrams.

Expert system facilities
commonly used to explain the
system’s line of reasoning.

The SDLC phase in which the
system is put on-line and
extensively tested.

Component of an expert system
architecture which performs
the match, select, and execute
cycle.

Quantitative measurements
about software characteristics
(e.g., number of lines of code
and number of errors).

An expert system development
tool that 1is marketed by
IntelligenceWare, Los Angeles,
California.

Knowledge-Based Programming
Assistant, University of
Illinois, at Urbana-Champaign.

Knowledge~Based Software
Assistant, Rome Air
Development Center, Rome, New

York.

Maintenance Phase

Method (GLITTER)

Metric

Output Parameters

PA

Plan Calculus

Project Parameters

Query Language

o]

142

The SDLC phase in which the
software is continuously
upgraded and modified to meet
user needs and to correct bugs
which surface during usage.

A formal mechanism for
representing decision-making
strategies in GLITTER.

A guantitative software
measure used to compare Actual
and Optimal values of code
characteristics (e.g., errors
and lines of code).

SOFTMAN's qualitative
decisions regarding the
project (e.g., time schedule
and productivity).

Programmer’s Apprentice, MIT.

A method used by PA to
represent programs and
programming knowledge.

Estimates made by a manager
about a particular project
when it is first run in
SOFTMAN.

Language used to obtain
information from a database.

RADC

Prototyping

Requirements Phase

Rule-Based Approach

SDLC

Selection-Rule (GLITTER)

Softman

Software Crisis

Software Development Life
Cycle

Software Management

n

143

Rome Air Development Center,
Rome, New York.

Software development process
wherein the program is
interatively refined until it
meets complete specifications.

The first phase of the SDLC in
which system requirements are
determined at a very high
level.

A knowledge-based system
wherein information is stored
as If-Then structures.

Software Life

Cycle.

Development

Mechanism used in GLITTER to
resolve conflicts between two
goals which are simultaneously
ready for firing.

The Software Manager'’s
Apprentice; project currently
underway on the Oak Ridge
Reservation.

Phenomenon
failure of
software development
to meet software needs.

caused by the
conventional
methods

Process of developing a

software systen from
conception through
implementation and

maintenance.

Process of co-ordinating and
controlling a software
development team’s activities
in terms of budget, |user
needs, time constraints, etc.

Specification Languages

Specifications Phase

I
Temporal Changes
Transformational Implementation
(TI)

v
VHLL

w

Waterfall Method

144

VHLLs which allow progran
expression in terms of
specifications; progressively
refining them ¢to 1lower
abstraction levels.

The SDLC phase 1in which
requirements are expressed in
a formal language.

Changes over time.

Software devclopment paradigm

which starts with a high-level
specification of the program
and applies various
transformations until the
program is generated.

Very High Level Language.

Traditional method of
developing software; entails
sequential stages.

